PHYSIOLOGY CHARACTER of Bacillus Spp As BIOSTIMULANT PROMOTING OF PLANT GROWTH

Henry Kesaulya, Jeffij V. Hasinu, G.N.C. Tuhumury

Abstrak


The purpose of this research to know the physiologically character of Bacillus spp. rhizobacteria of potato var. Hartapel as promoting to plant growth. Rhizosbacteria was isolated and tested for producing ACC deaminase, IAA, GA, fixing nitrogen, dissolving phosphate, producing siderophores and hydrogen cyanide. Bacterial isolates Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, Bacillus cereus Strain HY, and Bacillus moyavensis UCMB 5075 are non-pathogenic thermotolerant. The consortium of bacterial isolates Bacillus subtilis Strain SWI16b with Bacillus subtilis Strain HPC21 are synergistic non pathogenic and have the most complete characters that can stimulant the growth and development in vitro of potato crops. These bacterial isolates can be used as active ingredients for biostimulant formulation to promote plant growth.


Teks Lengkap:

PDF

Referensi


Amara MAT, Dahdoh MSA.1997. Effect of inoculation with plant growth-promoting rhizobacteria

Asghar HN, Zahir ZA, Arshad M, Khalig A.2002. Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:146–151.

Banks,J.M. and G.C. Percival. 2012. Evaluation of Biostimulants to Control Guignardia Leaf Blotch

Bin L, Smith DL, Ping-Qui F.2000. Application and mechanism of silicate bacteria in agriculture and industry. Guizhou Sci 18:43–53.

Biswas JC, Ladha JK, Dazzo FB.2000. Rhizobial inoculation in

fluences seedling vigor and yield of rice. Agron J 92:880–886.

Borrow, A., P.W. Brain, U.E. Chester, P.J. Curtis, H.G. Hemming, E.C. Jeffereys, R.B.

Lloyd, I.S. Nixon, G.L.F. Norris and N. Radley. 1955. Gibberellic acids a metabolic product of the fungus Gibberella fujikuroi some observations on its production and isolation. J. Sci. Food. Agric., 6: 340-348.

Bottini R, Cassan F, Piccoli P. 2004. Giberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497503.

Calvo, P., Nelson, L., Kloepper, J.W., 2014. Agricultural uses of plant biostimulants.Plant Soil 383, 3–41.

Chanway CP.1998. Bacterial endophytes: ecological and practical implications. Sydowia 50:149–170

Chelius, M.K., and Triplett, E.W. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41: 252–263.

Chen C, Bauske EM, Musson G, Rodriguez-Kaban ˜a R, Kloepper JW.1994. Biological control of Fusarium on cotton by use of endophytic bacteria. Biol Control 5:83–91.

da Silva.K, Rafaela Simão Abrahão Nóbrega, Adriana Silva Lima, Alexandre Barberi1,

Fatima Maria de Souza Moreira, 2013. Density and diversity of diazotrophic bacteria isolated from Amazonian soils using N-free semi-solid mediaSci. Agric.

Defago, G., Berling, C.H., Burger, U., Haas, D., Kahr, G., Keel, C., Voisard, C., Wirthner,

P. and Wuthrich, B. 1990. Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens potential applications and mechanisms. In: Biological control of soil bore plant pathogens, D. Hornby

Ding.Y., J. Wang, Y. Liu and Chen. S. 2005. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. Journal of Applied Microbiology 99: 1271–1281.

Döbereiner J and Pedrosa FO .1987. The genus Azospirillum. In: Nitrogen-fixing bacteria in non-leguminous crop plants. Madison: Science Tech. Publishers, 155 pp.

Döbereiner J, Baldani VLD and Reis VM.1995. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M

du Jardin, 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae. 196, 3–14.

Dworkin, M. and J. Foster, 1958. Experiments with some microorganisms which utilizeethane and hydrogen. J. Bacteriol., 75: 592-601. PMID: 13538930.

Figueiredo MVB, Burity HA, Martinez CR, Chanway CP.2008. Alleviation of water stress effects in common bean

Garbeva, P., van Overbeek, L.S., van Vuurde, J.W.L., van Elsas, J.D. 2001. Analysis ofendophytic bacterial communities of potato by plating and denaturating gradient gelelectrophoresis

Glick BR.1995. The enhancement of plant-growth by free-living bacteria. Can J Microbiol41:109–117.

Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminaseproducingsoilbacteria.Eur.J.PlantPathol.119:329-339.

Glickman E, Dessaux Y. 1995. A critical examination of the specificaty of the Salkowskireagent for indolic compoumds produced by phytopatogenic bacteria. Appl Environ Microbial 61:793-796.

Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities anddistinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

Gupta A, Gopal M, Tilak KV. 2000. Mechanism of plant growth promotion by

rhizobacteria. Indian J Exp Biol 38:856–862.

Gutierrez CK, Matsui GY, Lincoln DE, Lovel CR. 2009. Production of the phytohormone indole-3acetic acid by the estuarine species of the genus Vibrio. Appl Environ Microbiol 75: 2253-2258.

Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., Yermiyahu, U., 2015. The use of biostimulants for enhancing nutrient uptake. In: Sparks, D.L. Hofte M .1993. Classes of microbial siderophores. In: Barton LL, Hemming BC

Kauffman GL, Kneivel DP, Watschke T.L. 2007. Effects of a biostimulant on the heattolerance associated with photosynthetic capacity, membrane thermostability, and

polyphenol production of perennial ryegrass. Crop Sci. 47:261–267.

Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 36:1242–1255.

Kirshtein, J.D., Pearl, H.W., and Zehr, J.P. 1991. Amplification, cloning, and sequencing of a nifh segment from aquatic microorganisms and natural communities. Appl. Environ. Microbiol. 57: 2645–2650.

Kloepper JW, Schroth MN, Miller TD. 1980. Effects of rhizosphere colonization by plant growthpromoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078–1082

Kloepper JW, Lifshitz R, Zablotowicz RM, 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7 (

Kloepper, J.W. A. Gutierrez-Estrada, and J.A. McInroy.. 2007. Photoperiod regulateselicitation of growth promotion but not induced resistance by plant growth-promotingrhizobacteria. Can. J. Microbiol. 53, 159–167.

Kumari A, Sairam RK. 2013. Moisture stress induced increases in the activity of enzymes ofosmolytes biosynthesis are associated with stress tolerance in wheat genotypes. IndianJ Plant Physiol. 18:223–230.

Lea-Madi, M. Kessel, Ester Sadovnik, Y. Henis, 1988. Electron microscopic studies ofaggregation and pellicle formation inAzospirillum spp. Plant and Soil 109: 115-121.

Lelliott RA, Stead DE, 1987. Methods for the diagnosis of bacterial diseases of plants. In:Preece TF, ed. Methods in Plant Pathology, vol 2. Oxford, UK: Blackwell Scientific Publications, 44–56.

Mantilla-Paredes, A.J., G.I. Cardona, C.P. Peña-Venegas, U. Murcia, M. Rodríguez and M.M. Zambrano. 2009. Distribuición de bacterias potencialmente fijadoras denitrógeno y su relación con parámetros fisicoquímicos con tres coberturas vegetales enel sur de la Amazonia colombiana. Rev. Biol. Trop. 57: 915-927.

Mariano RLR, Kloepper JW. 2000. Me ´todo alternativo de biocontrole: Resiste ˆncia sisteˆmica induzida por rizobacte ´rias. Revisa ˜o Anual de Patologia de Plantas 8:121–137

Ohkuma, M., Noda, S., Usami, R., Horikoshi, K., and Kudo, T. 1996. Diversity of nitrogenfixation genes in the symbiotic intestinal microflora of the termite Reticulitermessperatus. Appl. Environ. Microbiol. 62: 2747–2752.

Pan B, Bai YM, Leibovitch S, Smith DL.1999. Plant growth promoting rhizobacteria andkinetic as ways to promote corn growth and yield in short season areas. Eur J Agron11:179–186

Reiter, B., Pfeifer, U., Schwab, H., and Sessitsch, A. 2002. Response of endophytic bacterialcommunities in potato plants to infection with Erwinia carotovora subsp. atrospetica.Appl. Environ. Microbiol. 68: 2261–2268.

Saranraj, P., P. Sivasakthivelan and S. Siva Sakthi. 2013. Prevalence and production of plant growth promoting substance by Pseudomonas fluorescens isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. African Journal of Basic and Applied Sciences, 5

Saribay,G.F. 2003. Growth and nitrogen fixation dynamics of Azotobacter chroococcum in nitrogen-free and OMW containing medium, Doctoral Thesis, The Middle East Technical University.

Schippers B. 1993. Exploitation of microbial mechanisms to promote plant health and plant growth. Phytoparasitica 21: 275-279.

Seldin L et al .1984. Bacillus azoto fixans sp. nov. a nitrogen fixing species from Braziliansoils and grass roots. Int J Syst Bacteriol 34:451–456.

Sessitsch, A., Reiter, B., Pfeifer, U., and Wilhelm, E. 2005. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetesspecific PCR of 16S rRNA genes. FEMS Microbiol. Ecol. 39: 23–32.

Sgroy, V., Cassa´ n, F., Masciarelli, O., Del Papa, M. F., Lagares, A. and Luna, V. 2009. Isolation and characterization of endophytic plant growth-promoting Shanmugam KT, Valentine RC. 1975. Molecular biology of nitrogen fixation. Science.187(

Sharma. H.S.S., C. Selby., E. Carmichael., C. McRoberts., J. R. Rao., P. Ambrosino., M.

Chiurazzi., M. Pucci., T. Martin. 2016. Physicochemical analyses of plant biostimulant formulations and characterization of commercial products by instrumental techniques.Chem. Biol. Technol. Agric. 3:13.

Silva VN, Silva LESF, Figueiredo MVB. 2006. Atuac¸a ˜o de rizo ´bios com rizobacte ´rias promotoras de crescimento em plantas na cultura do caupi

Silva, T.F. and R. Melloni. 2011. Densidade e diversidade fenotípica de bactérias diazotróficas não simbióticas em solos da Reserva Biológica Serra dos Toledos,Itajubá (

Sivasakthivelan P, Stella D. 2012. Studies on the Phytohormone Producing Potential of Agriculturally Beneficial Microbial

Stella.M., Suhaimi. M. 2010. Selection of suitable growth medium for free-living diazotrophs isolated from compost. J. Trop. Agric. and Fd. Sc. 38

Stutz, E., Defago, G., and Kern, H. 1986. Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76: 181-185.

SubbaRao NS. 1982. Advances in agricultural microbiology. Oxford and IBH Publications Company, India, pp 229–305

Sundara Rao,WCB, Shinha MK. 1962. Phosphate dissolvingmicroorganism in the soil and

rizophere. Indian J. Sci. 23: 272-278.

Ueda, T., Suga, Y., Yahiro, N., and Matsuguchi, T. 1995. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177: 1414–1417.

Vessey JK .2003. Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586.

Voisard, C., Keel, C., Haas, D. & De! fago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8, 351-358.

Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. Int J Mol Sci. 14:7370–7390.

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction andaction in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 111:1021–1058.

Widmer, F., Schaffer, B.T., Porteous, L.A., and Seidler, R.J. 1999. Analysis of nifh genepool complexity in soil and litter at a Douglas fir forest site in Oregon Cascade Mountain Range. Appl. Environ. Microbiol. 65: 374–380.

Zhang F, Dashti N, Hynes RK, Smith DL. 1996. Plant growth-promoting rhizobacteria and soybean [Glycine max

Zeng H, Wang G, Hu X, Wang H, Du L, Zhu Y. 2014. Role of microRNAs in plant responses to nutrient stress. Plant Soil. 374:1005–1021.


Refbacks

  • Saat ini tidak ada refbacks.