Single Low Dose Streptozotocin (STZ) to Increase Serum Triglyceride Levels of Rats

Adhiningsih Yulianti, Arisanty Nur Setia Restuti, Novita Nuraini


Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia due to  relative  or  absolute  lack  of  insulin. Insulin  resistance  and  insulin  deficiency  are  relatively related to lipid changes because insulin plays an important role in regulating lipid metabolism. The  study  aimed  to  analyze  the efffect  of  single  low  dose streptozotocin  (STZ)  on  serum triglyceride  levels  of  rats. Experimental  with posttest  only  control  group  design was  used  in this  study. A  total  of  12  male Sprague  dawley rats  who  visited LPPT  4  Gadjah  Mada University  at  Yogyakarta was  selected  as  research  samples. Rats  were  assigned  to  two experimental  group  (control  group  and  diabetic  group).  Control  group  (n=6)  was given intraperitoneal injection with  phosphat  buffer  saline  (PBS),  and  diabetic  group  (n=6) was given intraperitoneal injection with single low dose STZ (30mg/kgBB). Triglyceride levels was analyzed  using  GPO-PAP  methods  after 3 days  STZ-induced  rats. Data  analysis  used Independent-T  Test (p<0.005). Serum  triglyceride  levels  in  control  group  56,33  mg/dl  were actually  lower  than  in  diabetic  rats  265,33  mg/dl.  Serum  triglyceride  levels  was  significantly diffrences between control group and diabetic group (p=0.042). Single low doses STZ-induced diabetic rats has an effect on increasing serum triglyceride level of rats.

Teks Lengkap:



King, A.J.F. 2012. The use of animal models in diabetes research. British Journal of Pharmacology, number 166, page 877-894.

Ghasemi, A., S. Khalifi, and S. Jedi. 2014. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Acta Physiologica Hungarica, volume 101, number 4, page 408-420.

Parhofer, K.G. 2015. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes and Metabolism Journal, volume 39, page 353-359.

Wu, L., and K.G. Parhofer. 2014. Diabetic Dyslipidemia. Metabolism Clinical and Experimental, volume 63, page 1469-1479.

Verges, B. 2015. Patophysiology of Diabetic Dyslipidaemia: where are we?. Diabetologia, volume 58, page 886-899.

Sugden, M., and M. Holness. 2017. Patophysiology of Diabetic Dyslipidaemia: Implications for Atherogenesis and Treatment. Clinical Lipidology, volume 6, number 4, page 401-411.

Takeda, Y., T. Shimomura, H. Asao, and I. Wakabayashi. 2017. Relationship between

Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Ampl ification Circuits for Diabetes. Journal of Diabetes Research, page 1-9.

Miranda-Osorio, P.H., A.E. Castell-Rodriguez, J. Vargas-Mancilla, C.A. Tovilla-Zarate, J.L. Ble-Castillo, D. E. Aguilar-Dominguez, I. E. Juarez-Rojop, and J. C. Diaz-Zagoya. 2016.

Protective Action of Carica papaya on β-Cells in Streptozotocin-Induced Diabetic Rats. International Journal of Enviromental Research and Public Health, volume 13, number 446,

page 1-9.

Firdaus, Rimbawan, S.A. Marliyati, K. Roosita. 2016. Streptozotocin, Sucrose-Induce Diabetic Male Rats Model for Research Approach of Gestational Diabetes Mellitus. The Indonesian

Journal of Public Health, volume 12, number 1, page 29-34.

Thomson, M., Z. M. Al-amin, K. K. Al-qattan, L. H. Shaban, and M. Ali. 2007. Antidiabetic and hypolipidaemic properties of garlic

Dal, S., and S. Sigrist. 2016. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complication. Diseases, volume 4, number 24, page 1-51.


  • Saat ini tidak ada refbacks.