Clinical Decision Support System (CDSS) based on Integrated Childhood Illness Management (ICIM) at Primary Health Care Center

Rinda Nurul Karimah, Raden Roro Lia Chairina, Andri Permana Wicaksono


The neonatal period is an important period in life. Infant Mortality Rate (IMR) is the number of infant deaths in the first 28 days of life (neonatal) per 1000 live births (PERMENKES No 53, 2014). IMR in Indonesia is still high compared to other ASEAN countries, based on data in 2016 showed that IMR reached 25.5, its mean that there were around 25.5 deaths per 1,000 babies born (BPS, 2016). Poor neonatal management clinically would cause abnormalities, and could  even  lead  to  lifelong  disability,  and  death,  while  administratively  could  cause  legal problems.  Neonatal  management  required  complete  clinical  data  support,  relevance,  accurate and timeliness aspects. This research was a mixed method research with action research approach and prototype  method in the development of Clinical Decision Support System (CDSS). This study produced CDSS based on Integrated Childhood Illness Management (IMCI) algorithm for neonatal service  management in primary  health care center. The results of testing system  that used  black-box  technique  was  accordance  with  the  requirements  and  obtained  a  valid  overall result.  DSS  IMCI  could  be  integrated  with  Electronic  Health  Record  (EHR)  so  appropriate clinical decision making could be done.

Teks Lengkap:



Depkes RI. 2014. PERMENKES Nomor 53 Tahun 2014 Tentang Pelayanan Kesehatan Neonatal Esensial.Jakarta

World Health Organization. 2015. Neonatal Mortality. WHO. Genewa. Diunduh:

Badan Pusat Statistik. 2016. Angka Kematian Bayi. BPS Jakarta.

WHO. 2016. World Health Statistics 2016 : Monitoring Health For The SDGs. Diaksesdari

Karimah, Rinda dan Wicaksono Andri. 2018. Prototype Sistem Informasi Pelayanan Bayi Baru Lahir pada

Fasilitas Kesehatan Primer. Jurnal Khazanah Informatika Vol. 4 No. 1 Juni 2018

Blank A, Prytherch H, Kaltschmidt J, et al. Quality of Prenatal and Maternal Care: Bridging The Know-Do

Gap. BMC Medical Informatics and Decision Making. Available from:

KEMENKES RI, 2016. Buku Kesehatan Ibu dan Anak. Kementrian Kesehatan RI dan JICA. Jakarta.

KEMENKES RI, 2015. Buku Bagan Manajemen Terpadu Balita Sakit (MTBS), Jakarta.

Abdullah, A. L., Albeladi, K. S., & AlCattan, R. F. 2014. Clinical decision support system in healthcare industry success and risk factors. International Journal of Computer Trends andTechnology, 11(4), 188-192.

Kumar, A. (2015). Stakeholder’s Perspective ofClinical Decision Support System. OpenJournal of Business and Management, 4(01),45.

Kusumadewi, S, dan Hartati, S. 2007. “Utilizing Fuzzy Multi-Attributr Decision Making for Group Clinical

Decision Making Model”, Proccedings of International Conference onSoft Computing, Intelligent System & Information Technology (ICSIIT 2007), pp. 18-24, UK Petra, Surabaya.

Amalia H & Evicienna. 2017. Aplikasi Sistem Penunjang Keputusan Untuk Prediksi Ibu Melahirkan. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer VOL. 3. NO. 1 Agustus 2017 E-ISSN: 2527-4864.

Meilantika Dian. 2017. Rancang Bangun Sistem Informasi Administrasi Menggunakan Metode Throwaway

Prototyping Development Pada Sultan-Sport. JUTIM Vol 2 No 2. Desember 2017. STMIK Musirawas.

Djauhari T, Assegaff S. 2016. Perancangan Sistem Informasi Layanan Persidangan Pada Pengadilan Negeri Sengeti. Jurnal Manajemen Sistem Informasi Vol 1 No. 1, September 2016.

Listiarsasih dkk. 2016. Efektifitas Media Video Penggunaan Spill Kit Terhadap Kemampuan Petugas di RS

PKU Muhammadiyah Yogyakarta Unit II. Jurnal Asosiasi Dosen Muhammadiyah Magister Administrasi Rumah Sakit Vol 2 No 2 Juli 2016.

Utarini Adi. 2008. Notes On Action Research (Ar) And Triangulation Method In Health Care. International Workshops on Contemporary Research in Nursing. Bandung.

O’Brien, A. James, Marakas, George.M. 2010. Management Information System, 10th Edition McGrawHill/Irwin, New York.


  • Saat ini tidak ada refbacks.