Isolasi dan karakterisasi bakteri yang berpotensi mengikat aflatoksin di rumen sapi


  • Dwi Sisriyenni Balai Pengkajian Teknologi Pertanian Riau
  • Suryahadi Departemen Ilmu Nutrisi dan Makanan Ternak. Fakultas Peternakan, Institut Pertanian Bogor
  • Komang G Wiryawan Departemen Ilmu Nutrisi dan Makanan Ternak. Fakultas Peternakan, Institut Pertanian Bogor
  • Dwierra Evvyernie Departemen Ilmu Nutrisi dan Makanan Ternak. Fakultas Peternakan, Institut Pertanian Bogor
  • Dadik Pantaya Politeknik Negeri Jember


Aflatoxin, Rumen bacteria, Bacterial isolation


The purpose of this study was to examine the influence of aflatoxins on rumen fermentation in vitro and obtained rumen bacterial isolates capable of binding aflatoxin. This trial consisted of three stages. The first trial was a reduction of aflatoxin in the rumen in vitro. The second experiment was the isolation and characterization of rumen bacteria that could bind aflatoxin. The third stage was to test the holding capacity of aflatoxin by rumen bacteria. This study used cow rumens. The Research design used a randomized complete block design (RCBD) factorial 2x3 and 2 replications. The first factor was the presence of aflatoxin (with and without the addition of aflatoxin), the second factor was the type of feed (diet and glucose), and the third factor was the time of incubation (0 and 4 hours). The results showed the presence of aflatoxin did not affect rumen conditions (pH, volatile fatty acid (VFA), and rumen lactic acid concentration), and the results obtained 6 isolates and isolation of rumen bacteria to bind aflatoxin up to 50%.


Download data is not yet available.

Author Biography

Dadik Pantaya, Politeknik Negeri Jember

Google Scholar ID: DhxPSdcAAAAJ&hl

Sinta ID: 5973576

Scopus ID: 57192013969



Barrow, G. I.; Feltham, R. K. A. (1993). Cowan and Steel’s Manual for The Identification of Medical Bacteria. Cambridge: Cambridge University Press.

Cappucino, J. G. . S. N. (2011). Microbiology: a Laboratory Manual (9th ed.). Adviso Wesley Pub. Comp. Inc. USA.

Carulla, J. E., Kreuzer, M., Machmüller, A., & Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research, 56(9), 961-970. doi:

El-Nezami, H., Mykkänen, H., Kankaanpää, P., Salminen, S., & Ahokas, J. (2000). Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B, from the chicken duodenum. J Food Prot, 63(4), 549-552. doi:10.4315/0362-028x-63.4.549

Firmin, S., Morgavi, D. P., Yiannikouris, A., & Boudra, H. (2011). Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes. Journal of Dairy Science, 94(11), 5611-5619. doi:

Gallo, A., Minuti, A., Bani, P., Bertuzzi, T., Cappelli. F. P., Doupovec, B., . . . Trevisi, E. (2020). A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. Journal of Dairy Science, 103(12), 11314-11331. doi:

Goering, H.K. and Van Soest, P. J. (1970). Forage Fiber Analysis (Apparatus Reagents, Procedures and Some Applications). Agriculture Handbook. Washington DC: United States Department of Agriculture. Diambil dari

Gonçalves, B. L., Muaz, K., Coppa, C. F. S. C., Rosim, R. E., Kamimura, E. S., Oliveira, C. A. F., & Corassin, C. H. (2020). Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Research International, 136, 109604. doi:

Haskard, C. A., El-Nezami, H. S., Kankaanpää, P. E., Salminen, S., & Ahokas, J. T. (2001). Surface binding of aflatoxin B(1) by lactic acid bacteria. Appl Environ Microbiol, 67(7), 3086-3091. doi:10.1128/AEM.67.7.3086-3091.2001

Jiang, Y., Ogunade, I. M., Pech-Cervantes, A. A., Fan, P. X., Li, X., Kim, D. H., . . . Adesogan, A. T. (2020). Effect of sequestering agents based on a Saccharomyces cerevisiae fermentation product and clay on the ruminal bacterial community of lactating dairy cows challenged with dietary aflatoxin B1. Journal of Dairy Science, 103(2), 1431-1447. doi:

Kankaanpää, P., Tuomola, E., El-Nezami, H., Ahokas, J., & Salminen, S. J. (2000). Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model. Journal of Food Protection, 63(3), 412–414.

Kiessling, K. H., Pettersson, H., Sandholm, K., & Olsen, M. (1984). Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl Environ Microbiol, 47(5), 1070-1073. doi:10.1128/aem.47.5.1070-1073.1984

Lay, B. W. (1994). Analisis Mikrobiologi di Laboratorium. Jakarta: Raja Graffindo Persada.

Lee, Y. K., El-Nezami, H., Haskard, C. A., Gratz, S., Puong, K. Y., Salminen, S., & Mykkänen, H. (2003). Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria. Journal of Food Protection, 66(3), 426–430.

Lettat, A., Nozière, P., Silberberg, M., Morgavi, D. P., Berger, C., & Martin, C. (2010). Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep. J Anim Sci, 88(9), 3041-3046. doi:10.2527/jas.2010-2926

Liu, N., Wang, J., Deng, Q., Gu, K., & Wang, J. (2018). Detoxification of aflatoxin B1 by lactic acid bacteria and hydrated sodium calcium aluminosilicate in broiler chickens. Livestock Science, 208, 28-32. doi:

Mansfield, H. R., Endres, M. I., & Stern, M. D. (1995). Comparison of microbial fermentation in the rumen of dairy cows and dual flow continuous culture. Animal Feed Science and Technology, 55(1), 47-66. doi:

Mc Donald, P., A., E., JFD., G., & CA., M. (2002). Animal Nutrition, 7th Ed. Edition. Longman Scientific and Technical Co. Published in The United States with John Willey and Sons Inc. New York.United States with John Willey and Sons Inc. New York.

Ogimoto, K. a. S. I. (1981). Atlas of Rumen Microbiology. Japan: Japan Scientific Societies Press, Tokyo

Pantaya, D., Morgavi, D. P., Silberberg, M., Martin, C., Suryahadi, Wiryawan, K. G., & Boudra, H. (2016). Bioavailability of aflatoxin B 1 and ochratoxin A , but not fumonisin B 1 or deoxynivalenol , is increased in starch-induced low ruminal pH in nonlactating dairy cows. Journal of Dairy Science, 99(12), 9759–9767.

Park, W., Park, M. Y., Song, G., & Lim, W. (2019). Exposure to aflatoxin B1 attenuates cell viability and induces endoplasmic reticulum-mediated cell death in a bovine mammary epithelial cell line (MAC-T). Toxicology in Vitro, 61, 104591. doi:

Rahayu, R. I., Subrata, A., & Achmadi, J. (2018). Fermentabilitas Ruminal In Vitro pada Pakan Berbasis Jerami Padi Amoniasi dengan Suplementasi Tepung Bonggol Pisang dan Molases. 2018, 20(3), 9. doi:10.25077/jpi.20.3.166-174.2018.

Silva, L. J., Pena, A., Lino, C. M., Fernández, M. F., & Mañes, J. (2010). Fumonisins determination in urine by LC-MS-MS. Anal Bioanal Chem, 396(2), 809-816. doi:10.1007/s00216-009-3231-9

Upadhaya, S. D., Park, M. A., & Ha, J. K. (2010). Mycotoxins and Their Biotransformation in the Rumen: A Review. Asian-Australas J Anim Sci, 23(9), 1250-1260. doi:10.5713/ajas.2010.r.06

Usman, Y. (2013). Pemberian Pakan Serat Sisa Tanaman Pertanian (Jerami Kacang Tanah, Jerami Jagung, Pucuk Tebu) Terhadap Evolusi pH, N-NH3 dan VFA Di dalam Rumen Sapi. Jurnal Agripet, 13(2), 53–58.

Wulandari, S., Agus, A., Cahyanto, M. N., & Utomo, R. (2014). Effect of fermented cacao pod supplementation on sheep rumen microbial fermentation. Journal of the Indonesian Tropical Animal Agriculture, 39(3), 167–174.

Yao, Y., Gao, S., Ding, X., Zhang, Q., & Li, P. (2021). Topography effect on Aspergillus flavus occurrence and aflatoxin B1 contamination associated with peanut. Current Research in Microbial Sciences, 100021. doi:



How to Cite

Sisriyenni, D., Suryahadi, S., G Wiryawan, K., Evvyernie, D., & Pantaya, D. (2021). Isolasi dan karakterisasi bakteri yang berpotensi mengikat aflatoksin di rumen sapi. Jurnal Ilmu Peternakan Terapan, 4(2), 51–59. Retrieved from