Aplikasi Digital Image Processing untuk Grading Citra Manggis
Abstract
Mangosteen (Garcinia Mangostana Linn) is an Indonesian native fruit with the nickname of "queen of fruit". Indonesia has a
very high export potential for mangosteen. Banyuwangi is the largest production center of mangosteen fruit in East Java. The
main problem often faced by mangosteen farmers in the post-selection process is the quality selection which is done manually. It
raises several issues, such as less equitable observations due to visual limitations of fatigue and observers’ differences in
perceptions. Depend on these problems, taking pictures with camera and digital image processing could be a solution. Digital
image processing was done by extracting the color of the mangosteen with various quality classes into Hue, Saturation and
Intensity and by measuring the diameter to be used astesting data. The qualification process of mangosteen fruit used k-NN
method in which the sorting was done based on the proximity of the distance between the image features and the diameter which
were obtained from the tested mangosteen toward the training data. In this case study, the test was performed on 15 testing data
toward 75 training data consisting of various quality classes on the side view images. The test performed had the accuracy of
93.3% with the score of k = 3 and 86.6% with the score of k = 5 on the side view.
Keywords— Mangosteen, Grading, HSI, k-NN
References
U. Nuraniputri, H. K. S. Daryanto, and Kuntjoro, “Produksi Manggis
Pada Beberapa Kelompok Umur Tanaman dan Faktor-Faktor yang
Mempengaruhi Produksi Manggis di Kabupaten Sukabumi, Jawa
Barat,†J. Agribisnis Indones., vol. 4, no. 1, pp. 67–78, 2016.
S. A. Amrullah, “Perancangan Sistem Inspeksi Visual Berbasis
Computer Vision Untuk Penggolongan Buah Apel,†Institut
Teknologi Sepuluh Nopember, 2017.
O. Heriana, R. Hidayat, J. Grafika, and Y. Indonesia, “Klasifikasi
Mutu Buah Manggis Berdasarkan Warna Berbasis Fuzzy C Means
dan Template Matching,†pp. 2–6, 2011.
Sandra, “IMage Processing Application for Mangosteen Grading
with non Destructive Method,†J. Appl. Sci. Res., vol. 7, no. 12, pp.
–1894, 2011.
Q. Meng, R. Qiu, J. He, M. Zhang, X. Ma, and G. Liu,
“Development of agricultural implement system based on machine
vision and fuzzy control,†Comput. Electron. Agric., vol. 112, pp.
–138, 2015.
R. Azhar, A. Z. Arifin, W. N. Khotimah, J. T. Informatika, and F. T.
Informasi, “Integrasi Density-Based Clustering Dan Hmrf-Em Pada
Ruang Warna HSI untuk Segmentasi Citra Ikan Tuna,†J. Inspirat.,
vol. 6, pp. 28–37, 2016.
M. Poeloengan and P. Praptiwi, “UJI AKTIVITAS ANTIBAKTERI
EKSTRAK KULIT BUAH MANGGIS (Garcinia mangostana
Linn),†Media Penelit. dan Pengemb. Kesehat., vol. 20, no. 2 Jun, pp.
–69, 2010.
A. W. Permana, “Kulit Buah Manggis Dapat Menjadi Minuman
Instan Kaya Antioksidan,†Balai Besar Penelitian dan
Pengembangan Pascapanen Penelitian, vol. 32, Bogor, pp. 32–34,
L. Maulina and N. Sugihartini, “FORMULASI GEL EKSTRAK
ETANOL KULIT BUAH MANGGIS (Garcinia mangostana L.)
DENGAN VARIASI GELLING AGENT SEBAGAI SEDIAAN
LUKA BAKAR,†Pharmaciana, vol. 5, no. 1, p. 43, 2015.
Zhang Y, “On the use of CBIR in Image Mosaic Generation,â€
Canada, 2002.