E-ISSN: 2503-1112 | P-ISSN: 2503-1031 DOI: 10.25047/j-dinamika.v10i2.5890

Audit Energi sebagai Wujud Penghematan Energi Listrik di Asrama Vyatra 1 Politeknik Energi dan Mineral Akamigas Cepu

Energy Audit as a Form of Saving Electrical Energy in Vyatra 1 Dormitory of Energy and Mineral Polytechnic Akamigas Cepu

Pujianto 1*, Astrie Kusuma Dewi 1, M.Zaky Zaim M 1, Asepta Surya Wardhana 1

- ¹ Teknik Instrumentasi Kilang, Politeknik Energi dan Mineral Akamigas
- * pujiato1968@gmail.com

ABSTRAK

Pelaksanaan audit energi di Gedung Asrama Vyatra I, PEM Akamigas, untuk mengidentifikasi potensi penghematan energi. Audit ini mencakup analisis konsumsi energi, profil tegangan dan arus, harmonisa, tata cahaya, dan sistem tata udara. Data historis konsumsi energi dinormalisasi dengan pengukuran selama dua minggu, menghasilkan perkiraan konsumsi energi tahunan sebesar 159.044 kWh. Gedung Asrama Vyatra I diasumsikan menyumbang ±9,17% dari total penggunaan energi di sepuluh gedung. Intensitas Konsumsi Energi (IKE) gedung ini meningkat dari 135,02 kWh/m²/tahun pada tahun 2021 menjadi 159,2 kWh/m²/tahun pada tahun 2023, melampaui nilai benchmarking gedung perkantoran sebesar 102 kWh/m²/tahun. Hasil pengukuran dengan Power Quality Analyzer (PQA) menunjukkan kondisi unbalance tegangan dan arus masih sesuai standar. Harmonisa arus (THD) juga berada di bawah batas standar IEEE 519-1992, yaitu <20%. Sistem pencahayaan dinilai cukup baik, meskipun masih terdapat area yang lampunya tetap menyala meskipun kosong. Suhu dan kelembaban di beberapa ruangan bervariasi, beberapa memenuhi standar SNI (suhu 25-27°C dan kelembaban relatif 50-70%), sementara yang lain berada di luar rentang tersebut. Implementasi penghematan, terutama pemasangan PLTS atap, direkomendasikan untuk mengurangi konsumsi energi dan memanfaatkan kelebihan energi untuk gedung-gedung lain di kompleks tersebut.

Kata kunci — audit energi, penghematan, IKE

ABSTRACT

Implementation of an energy audit at the Vyatra I Dormitory Building, PEM Akamigas, to identify potential energy savings. This audit includes analysis of energy consumption, voltage and current profiles, harmonics, lighting systems, and air conditioning systems. Historical energy consumption data is normalized with measurements over two weeks, resulting in an estimated annual energy consumption of 159,044 kWh. The Vyatra I Dormitory Building is assumed to contribute ±9.17% of the total energy use in ten buildings. The Energy Consumption Intensity (IKE) of this building increased from 135.02 kWh/m²/year in 2021 to 159.2 kWh/m²/year in 2023, exceeding the benchmarking value of office buildings of 102 kWh/m²/year. The measurement results using the Power Quality Analyzer (PQA) show that the voltage and current unbalance conditions are still in accordance with standards. Current harmonics (THD) are also below the IEEE 519-1992 standard limit, which is <20%. The lighting system is considered quite good, although there are still areas where the lights are still on even though they are empty. The temperature and humidity in several rooms vary, some meet SNI standards (temperature 25-27°C and relative humidity 50-70%), while others are outside the range. Implementation of savings, especially the installation of rooftop solar power plants, is recommended to reduce energy consumption and utilize excess energy for other buildings in the complex.

Keywords — energy audit, savings, IKE

1. Pendahuluan

Era modern ini, efisiensi energi menjadi salah satu pilar utama dalam pengelolaan bangunan gedung yang berkelanjutan. Instansi pemerintah memegang peran strategis sebagai pemimpin dan teladan dalam berbagai inisiatif keberlanjutan, termasuk efisiensi energi. efisiensi energi yang dibutuhkan secara tidak langsung akan mengurangi jumlah CO2 yang dihasilkan dari produksi energi fosil. Seraya mengurangi jumlah produksi CO2 tersebut tidak akan memberikan langsung kontribusi ke lingkungan dengan mengurangi polusi udara[1] tantangan perubahan iklim yang semakin nyata dan kebutuhan akan pengurangan emisi karbon,penghematan energi secara efisien tidak hanya mengurangai biaya operasional tapi juga menjadi tanggung jawab moral, tetapi juga mendukung inisiasi keberlanjutan dan tanggung iawab lingkungan serta meningkatkan kenyamanan dan produktifitas penghuni gedung.[2].Penggunaan energi yang berlebihan tentu dapat menyebabkan pemborosan energi, sumber utama dari peralatan elektronik semakin banyak peralatan elektronik yang digunakan maka konsumsi energi listrik akan meningkat mempengaruhi [3].selain biava membengkak pada pembayaran rekening listrik tetapi juga berkontribusi lebih luas pada kerusakan lingkungan, seperti efek rumah kaca dan hujan asam.[4] sehingga untuk mencegah penggunaan energi yang berlebihan perlu dilakukan tindakan efisiensi energi, menggunakan energi dengan rasional [5]artinya penggunaan energi yang optimal tanpa harus mengurangi atau meninggalkan kenyamanan visual maupun thermal ruangan serta aspek keamanan[6] Penggunaan energi bangunan gedung secara global diperkirakan akan tumbuh lebih dari 40% dalam 20 tahun ke depan [7], Salah satu metode yang digunakan untuk mengefisien pemakaian energi yaitu Konservasi Energi[8]. Konservasi energi adalah upaya sistematis, terencana, dan terpadu guna dalam melestarikan sumber daya energi dalam negeri dan meningkatkan efisiensi pemanfaatanya[9][10]. Langkah konservasi yang ditetapkan dalam Peraturan Pemerintah nomor 33 tahun 2023 dalam pasal 37 menjelaskan bahwa pengurus daerah wajib melakukan konversi energi melalui manajemen

energi demi terciptanya penggunaan energi yang efisien dan hemat. Kemudian di pasal 7 menjelaskan bahwa manejemen energi dapat dilakukan dengan beberapa langkah salah satunya adalah pelaksanaan audit energi [11].

pelaksanaan Indonesia, audit energi berpedoman pada SNI-6196-2011 tentang prosedur audit energi pada bangunan[12]..Audit energi ini juga merupakan langkah awal dari manajemen energi yang dapat membantu tercapainya penurunan biaya energi di gedung secara keseluruhan. Berkenaan dengan hal tersebut diatas maka audit energi dipandang perlu untuk dilaksanakan bagi bangunan gedung di lingkungan Pemerintah terutama dibawah Kementerian ESDM yang bergerak dalam bidang pendidikan sebagai upaya dan langkah nyata dalam konservasi energi.

2. Target dan Luaran

Adapun target dan luaran dari kegiatan ini antara lain:

- a. Mengetahui konsumsi energi pada suatu bangunan yang digunakan [13]
- b. Mengetahui kondisi aktual gedung (sistem tata udara, kelembaban, tata cahaya, , sistem peralatan lainnya, sistem monitoring energi dan sistem transportasi gedung);[14]
- c. Mengidentifikasi potensi-potensi apa saja agar bisa menurunkan konsumsi energi pada gedung;[15]
- d. Merumuskan rekomendasi langkah-langkah penghematan energi yang dapat
- e. ditindaklanjuti pihak pengelola bangunan
- f. gedung dalam rangka penghematan
- g. energi;
- h. Merumuskan panduan pelaksanaan hemat energi untuk masing-masing gedung yang telah dilakukan audit energi.

3. Metodologi

Adapun metodologi yang digunakan antara lain:

a. Studi Literatur

Kajian penulis atas referensi-referensi baik berupa buku, karya ilmiah,prosiding yang berkaitan dengan kegiatan ini[16].

Publisher : Politeknik Negeri Jember

- b. Tahap Persiapan
 - Terdiri dari identifikasi, tujuan audit, pengumpulan data, tim audit, peralatan dan jadwal pelaksanaan.
- c. Tahab Pengumpulan data berisikan data primer dan data sekunder. Hasil pengukuran dan pengamatan langsung merupakan data primer, kemudian informasi pendukung dari penglola gedung dianggap sebagai data sekunder[17]
- d. Tahab Analisa data berisikan perhitungan konsumsi energi, Intensitas Konsumsi Energi(IKE), analisa peluang penghematan dan evaluasi sistem[18]
- e. Tahab Rekomendasi berisikan penyusunan laporan dan rekomendasi perbaikan

Berikut adalah data peralatan pengukuran yang digunakan seperti pada tabel 1:

Tabel 1 Data Peralatan ukur

	Tab	er i Data Perafatan	ukur
No	Nama Alat Ukur	Fungsi	Gambar alat
1	Power Quality Analizer	Untuk mengukur kualitas kelistrikan seperti: arus, tegangan, daya, factor daya/cos phi, frekuensi, load/beban, harmonisa arus dan tegangan, histerisis secara continue (dalam beberapa waktu lama/periode)	
2	Clamp Ampere Meter	Untuk mengukur arus, tegangan serta hambatan listrik pada peralatan.	
3	Distance Meter	Mengukur luas ruangan	
4	Lightmeter ł Luxmeter	Mengukur besaran luminitas (lumens) cahaya'sinar	
5	Humidity and Thermo meter	Mengukur suhu ruangan serta kelembaban udara humidity (%RH) (Hanya di gunakan pada gedung Kemendikbudristek	
6	Anemometer	Mengukur laju atau kecepatan udara pada kondisi atmosferik (Hanya di gunakan pada gedung	
7	Electrical Safety Gloves	Proteksi dalam pekerjaan listrik	Hall the same of t

4. Pembahasan

Kegiatan audit energi dilakukan pada bangunan gedung Asrama Vyatra 1 Politeknik Energi dan Mineral Akamigas (PEM Akamigas) dengan posisi atap gedung menghadap ke utara, serta pintu masuk menghadap barat. Terdiri dari dari 2 lantai yang hanya dipergunakan sebagai asrama mahasiswa Tingkat 1, dan dihuni mahasiswa sebanyak 138 orang. Kondisi ruangan Non AC meliputi Lorong, toilet, ruang lobby, hasil pengukuran berasal dari Pengukuran aktual dan DED (Detail Engineering Design) Gedung Asrama Vyatra 1 dengan detail sebagai berikut:

Tabel 2. Fasilitas Gedung Asrama Vyatra I

Gedung Asrama Vyatra 1 Politeknik Energi dan Mineral Akamigas					
Tahun berdiri Gedung	1966				
Jumlah lantai	2 lantai				
Luas Lantai 1	502 m ²				
Luas Lantai 2	497 m ²				
Luas lantai total	1716,3 m ²				
Luas lantai bangunan ber-AC	999 m ²				
Luas lantai bangunan tak ber-AC	717,3 m ²				
Total Penghuni	138 Mahasiswa				
Fungsi gedung	Asrama tempat Tinggal Mahasiswa				

Berikut tampilan dari Gedung Asrama Vyatra 1 PEM Akamigas gambar 1

Gambar 1. Gedung Asrama Vyatra 1

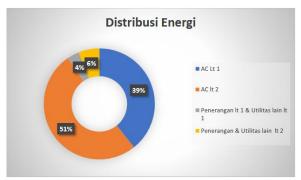
Berikut Gambar 2 adalah grafik konsumsi energi secara keseluruhan.

Gambar 2. Konsumsi dan Biaya Energi Listrik Tahun 2021 s/d 2023

Dikarenakan satu id pelanggan listrik PLN untuk 10 gedung (Gedung Asrama Vyatra1 sd 8 , Gedung Restorasi, Gedung Wisma Tamu) maka dilakukan dengan asumsi normalisasi dari data

Publisher: Politeknik Negeri Jember

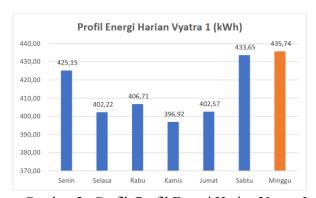
historis konsumsi energi dengan pengukuran selama 2 Minggu, sehingga diperkirakan dalam 1 (satu) tahun penggunaan energi Gedung Asrama Vyatra I sebesar 159044 kWh/tahun dari nilai tersebut dibagi pemakaian energi di tahun 2023 sebesar 1574829,8 dari hasil tersebut diasumsikan bahwa penggunaan energi pada gedung asrama Vyatra 1 sebesar \pm 9,17 % dari total keseluruhan penggunaan energi seperti gambar 3


Gambar 3. Asumsi Penggunaan Energi listrik di Gedung Asrama Vyatra 1

Nilai Intensitas Konsumsi Energi (IKE) untuk gedung Asrama Vyatra 1 berdasarkan konsumsi energi pertahun dibagi luas bangunan berAC(± 999 m²), maka di peroleh nilai IKE sebesar:

- a. Tahun $2021 = 135,02 \text{ kWh/m}^2/\text{tahun}$
- b. Tahun $2022 = 138,72 \text{ kWh/m}^2/\text{tahun}$
- c. Tahun $2023 = 159,20 \text{ kWh/m}^2/\text{tahun}$

Dari data tersebut dapat disimpulkan bahwa Gedung Asrama Vyatra I pada tahun 2021, 2022 dan 2023 mempunyai nilai IKE diatas nilai benchmarking Gedung Perkantoran sebesar 102 kWh/m2/tahun,(Balai Besar Teknologi Konversi Energi B2TKE BPPT, 2020).[19] maka ini akan berdampak surplus energi.


Distribusi konsumsi energi listrik terbesar diurutkan mulai dari sistem tata udara (AC) kamar Asrama sebesar 90 %, Penerangan / Lampu dan Peralatan lainnya 10 %, untuk detailnya dapat dilihat pada Gambar 3 dibawah ini.

Gambar 4. Distribusi Energi Asrama Vyatra I

Pengukuran Daya

Pengukuran daya dilakukan dengan Power Quality Analyzer pada Panel Gedung Asrama Vyatra I PEM Akamigas tersebut, dapat dibuat suatu grafik profil Energi Harian seperti gambar 5 berikut ini.

Gambar 5. Grafik Profil Energi Harian Vyatra I

Tegangan dan Arus

Nilai ketidakseimbangan tegangan dan arus merupakan parameter penting dalam sistem (kualitas) kelistrikan baik sistem transmisi ataupun distribusi tenaga. Ketidakseimbangan tegangan merupakan prosentase perbedaan tegangan antar fasa (R/S/T). Hal ini terjadi apabila tegangan tiap fasa mempunyai besar dan sudut tegangan yang tidak standar, sehingga tegangan antara fasa tidak sama.Standar untuk nilai ketidakseimbangan tegangan merujuk ke Standarisasi ANSI C84. 1 – 2016. Berdasarkan peraturan tersebut nilai batasan tertinggi untuk ketidakseimbangan tegangan di sistem distribusi tidak boleh melebihi (≤) 3%. Untuk Standar nilai ketidakseimbangan beban diatur dalam ANSI C84. 1-1995 dan IEEE (Institute of electrical and electronics engineers) Std 446 – 1980 yaitu tidak boleh melebihi (\leq) 20%.

Publisher: Politeknik Negeri Jember

Dari hasil pengukuran dengan Power Quality Analyzer (PQA), secara keseluruhan kondisi Unbalance Tegangan dan Arus pada kelistrikan Asrama Vyatra I dapat dilihat pada tabel 3 berikut:

Tabel 3 Profil Kondisi Unbalance Arus dan Tegangan Asrama Vyatra

No	Sumber	Keterangan			
140	Guillibei	Tegangan	Arus		
1	SDP Utama Gedung Asrama Vyatra I	< 2% (Balance)	<20% (Baik)		
2	Sistem Kelistrikan AC	< 2% (Balance)	>20% (Unbalance)		
3	Sistem Kelistrikan Penerangan & Utilitas Lain	< 2% (Balance)	>20% (Unbalance)		

Secara pengukuran pada panel SDP Utama Gedung Vyatra I, kondisi sisi Tegangan dan Arus nilainya masih sesuai dengan standar

Harmonisa Tegangan dan Arus

Total Harmonic Distortion atau THD merupakan fenomena atau gejala Dimana frekuensi menjadi tinggi akibat beban-beban nonlinier. Rujukan atau standar untuk nilai harmonisa tegangan dan arus merujuk ke IEEE (Institute of electrical and electronics engineers) Std 519-1992 tentang Harmonic Voltage Limits Berdasarkan peraturan tersebut nilai batasan tertinggi untuk harmonisa tegangan pada sistem distribusi tidak boleh melebihi 5% untuk dan nilai harmonisa arus tidak boleh melebihi 20%. Tingginya nilai persentase harmonisa arus dan tegangan (THD).

Hasil pengukuran terhadap nilai THD Tegangan dan Arus Gedung Asrama Vyatra 1 dapat dilihat gambar 6 dibawah ini:

		- Avg -					
	Times	Measured values	Average	Standard deviation	5%	50%	95%
U12 thd_f AVG [X]	5209	1,62 (19/11/2024 04.44.30.1) 0,67 (19/11/2024 11.11.00.1)	1,27	0,23	0,79	1,30	1,5
U23 thd_f AVG [X]	5209	1,49 (19/11/2024 04.51.15.1) 0,71 (19/11/2024 11.11.00.1)	1,17	0,18	0,81	1,20	1,4
U31 thd_f AVG [X]	5209	1,50 (19/11/2024 04:25.15.1) 0,67 (19/11/2024 13:36.45.1)	1,16	0,22	0,71	1,18	1,4
	Times	Measured values	Average	Standard deviation	5%	50%	95%
II thd_f AVG [K]	5209	43,93 (18/11/2024 16.34.15.1) 10,49 (19/11/2024 05.20.45.1)	12,96	1,50	11,23	12,68	15,6
I2 thd_f AVG [N]	5209	53,38 (18/11/2024 16.35.15.0) 10.75 (19/11/2024 11.50.45.1)	15,40	2,07	11,99	15,46	18,0

Gambar 6 Hasil pengukuran terhadap nilai THD di Vyatra 1

Dari gambar 6 didapatkan data sebagai berikut: Untuk THD Tegangan:

- U12 thd_f AVG: Rata-rata THD tegangan antara fasa U1 dan U2 adalah 1,27%.
- U23 thd_f AVG: Rata-rata THD tegangan antara fasa U2 dan U3 adalah 1,17%.

• U31 thd_f AVG: Rata-rata THD tegangan antara fasa U3 dan U1 adalah 1,16%.

Kesimpulan: THD pada tegangan antar fasa berada pada level rendah karena rata-rata di bawah 2%, yang biasanya dianggap aman untuk sistem kelistrikan.

Untuk THD Arus:

- I1 thd_f AVG: Rata-rata THD arus pada fasa I1 adalah 12,96%,
- I2 thd_f AVG: Rata-rata THD arus pada fasa I2 adalah 15,40%,
- I3 thd_f AVG: Rata-rata THD arus pada fasa I3 adalah 13,03%,

Kesimpulan: THD pada arus rata-rata 13,79% Sehingga masih di bawah standart(20%) Yang artinya kondisi aman untuk kelistrikan

Faktor Daya (CosPhi)

Nilai faktor daya [Cosphi] terendah yang di sarankan oleh PLN adalah 0,85.

Nilai Cosphi berdasarkan hasil pengukuran seperti pada gambar 7 dibawah ini

		- Avg -					
	Times	Measured values	Average	Standard deviation	5%	50%	95%
P Sum AVG [kW]	5209	22,365 (18/11/2024 23.58.30.1) 1,930 (18/11/2024 16.34.30.1)	17,313	2,086	14,222	17,412	20,384
	Times	Measured values	Average	Standard deviation	5%	50%	95%
PF Sum AVG	5209	0.8420 (19/11/2024 83.16.15.1) 0.6665 (18/11/2024 16.34.30.1)	0,8012	0,0167	0,7762	0,7990	0,8301
	Times	Measured values	Average	Standard deviation	5%	5 0%	95%
S Sum AVG [kVA]	5209	27,569 (18/11/2024 23.58.30.1) 2,872 (18/11/2024 16.34.30.1)	21,598	2,533	17,919	21,479	25,340
	Times	Measured values	Average	Standard deviation	5%	50%	95%
Q Sum AVG [kvar]	5209	-2.049 (18/11/2024 16.35.00.0) -15.816 (18/11/2024 23.58.30.1)	-12,694	1,527	-14,942	-12,576	-10,506

Gambar 7 Faktor Daya di SDP Panel Vyatra 1

Dari gambar 7.didapatkan nilai faktor daya ratarata **0,8192**, ini menunjukkan bahwa sistem memiliki efisiensi pemanfaatan daya yang **cukup baik**. Namun, ini berada di bawah nilai ideal **1,0** (faktor daya sempurna).

Sistem Tata Cahaya

Sistem pencahayaan pada Gedung Asrama Vyatra I di desain cukup baik, sudah menggunakan jenis lampu LED. mengetahui dan menentukan baik atau tidaknya kondisi sistem tata cahaya, telah diberlakukan nilai rujukan atau standar dari SNI 6197.2020 tentang Konservasi Energi pada Sistem Pencahayaan.yaitu sebesar 120 - 250 lux. Dari hasil pengukuran di 55 kamar rata-rata (41 -116 lux) di bawah standar minumun SNI.

Publisher: Politeknik Negeri Jember

Sedangkan hasil pengukuran Densitas Tata Cahaya rata-rata di masing-masing kamar 0,7 – 1,44 Watt / m² dan masih di bawah dari Standart minimum untuk asrama 5,7 Watt / m²)

Sistem Tata Udara

Sistem Tata Udara dirancang untuk memenuhi fungsi menjaga kenyamanan termal, kebersihan dan kesegaran udara di dalam Berdasarkan panduan dari SNI 6390:2020 tentang Konservasi Energi Sistem Tata Udara Bangunan Gedung, kenyamanan termal (thermal comfort) dicapai pada kondisi suhu rata-rata antara 24-27°C, dengan kelembaban antara 55%-65% untuk daerah tropis. Hasil pengukuran temperatur dan kelembapan udara di 55 kamar cukup beragam, ada yang memenuhi standar nilai SNI khususnya pada temperatur 25-27°C dan untuk nilai RH nilai terukur 50-70 sesuai dengan SNI . dan masih ada juga hasil suhu dan kelembapan yang di bawah dan di atas standar SNI.

Utilitas Lainnya

Peralatan pemanfaat energi yang digunakan di Gedung Asrama Vyatra I PEM Akamigas adalah Pompa dan peralatan lainnya sebagai berikut:

Tabel 4 Data pompa di Vyatra 1

W-4	Pompa				Lain-lain		
Keterangan	Pendorong	Hisap	STP	Sumpit	Heater	Boiler	
Jumlah (Unit)	2	2	-	-	-	-	
Daya (W)	1,6 kW	1,6 kW	-	-	-	-	
Jam Operasi (jam)	24 (auto)	24 (auto)	-	-	-	-	

Sebagai refrensi informasi dari pengelola bahwa pompa hisap dan booster digunakan setiap setiap hari dengan fungsi sebagai penghisap dari bak penampungan yang terletak dibawah dimana pengoperasiannya 1 untuk mengisap dengan 1 cadangannya dan pompa pendorong berjumlah 1 dengan cadangan sebanyak 1 pcs

Identifikasi Peluang Penghematan Energi

Dari hasil pengamatan dan pengumpulan data yang dilakukan, beberapa peluang penghematan energi yang yang teridentifikasi adalah:

- 1. Sistem Penerangan
- Penggunaan energi harian Penerangan dan Utilitas lain di Asrama Vyatra I sebesar 70,86 kWh, apabila mahasiswa bisa dikondisikan untuk berada di kampus

pada pukul 08.00 s.d 16.00, dan diimplementasikan dengan Kontaktor Kontroler seting timer otomatis, dengan implementasi ini dapat menjadi potensi

penghematan energi.

- 2. Sistem Tata Udara
- Berdasarkan pengukuran hasil audit dan informasi dari pengelola Gedung Asrama Vyatra I, bahwa AC beroperasi hampir disetiap waktu dikarena tidak mempunyai iadwal yang sama sehingga penggunaan AC.

jadwal yang sama sehingga penggunaan AC tetap beroperasi;

- Sehingga diusulkan dengan manajemen operasi pengoperasian AC pada pukul 06.00 s.d 16.00 Mahasiswa untuk mematikan system AC, dengan scenario Mahasiswa sudah berada dikampus pukul 08.00 s.d 16.00 dan system operasi menggunakan

- s.d 16.00 dan system operasi menggunakan dengan memasang system Kontaktor Kontroler timer otomatis, dengan implementasi ini diharapkan dapat menjadi potensi penghematan energi.
- Rata-rata penghuni menyetting remote AC terlalu rendah di >25°C sehingga dengan menseting di range 25 s.d 26 °C akan menjadi potensi penghematan energi;
- -Penggunaan teknologi AC masih menggunakan teknologi konvensional non inverter/ teknologi efisien tinggi, sehingga diusulkan untuk menggunakan teknologi Inverter atau lebih tinggi
- 3. Sistem Pompa
- -Kondisi Saat ini pompa digunakan untuk sebagai Booster dengan system hisap dari bak penampungan yang terletak posisi dibawah, sehingga mesin beroperasi sepanjang waktu; -Sehingga usulannya adalah dengan menggunakan Bak Penampung posisi diatas maka diharapkan akan memaksimalkan umur pompa dimana akan terbantu dengan gaya gravitasi untuk menyalurkan Air ke penghuni.

4. Manajemen Energi

- -Pembentukan organisasi Tim Energi (Perencanaan, Pengawasan, Pelaporan, Evaluasi)
- -Penetapan target Intensitas Konsumsi Energi
- -Rencana aksi penghematan energi yang bersifat No/Low Cost, Medium Cost & High Cost.
- -Melakukan monitoring dan evaluasi
- -Melakukan audit energi dan fasilitas secara reguler

Publisher: Politeknik Negeri Jember

Analisa Potensi Penghematan Energi

1.Sistem Tata Cahaya

Beberapa hal yang perlu dilakukan adalah:

- Kesepakatan pada jam operasi sistem lampu di Gedung Asrama Vyatra I PEM Akamigas.
- Prosedur permintaan operasi lampu di jam belajar (08.00 - 16.00) untuk menghindari operasi lampu dan utilitas lain yang tidak efisien diharapkan mahasiswa tidak menempati Asrama pada jam tersebut

Bila diskenariokan penghuni asrama dalam hal ini para mahasiswa dengan tidak tidak mengoperasikan pencahayaan dan utilitas lain selama pukul 08.00-16.00 (8 jam) asumsi dengan kondisi tetap di lokasi kampus selama hari efektif 252 hari, maka akan menghemat biaya dan energi seperti tabel 5 dan 6 berikut:

Tabel 5. Potensi Penghematan Manajemen Waktu Penerangan & Utilitas lain

Ruangan	Jam Off	Total kWh/tahun (252 hari)	Total Penghematan (Rp)
Lantai 1	08.00-16.00	1674,5	1.940.252
Lantai 2		2.071	2.400.036
Total		3745,7	Rp 4.340.288

Tabel 6 Rekomendasi Penghematan Manajemen Waktu Penerangan & Utilitas lain

No	Usulan Implement asi Penghema tan Energi	Potensi Penghemat an Energi per tahun (kWh/tahun	Potensi Penghemat an Biaya per Tahun (Rp/tahun)	Perkiraan Biaya Investasi	Penurun an Emisi (Ton CO2 ek) FE 0,83 kg CO2/kW h	Simple Payba ck Period (tahun)	Kriteri a
ı	SISTEM TATA CAHAYA						
1	Manajeme n Operasi	3745,7	4.340.288	Willingne	4,503	-	No Cost

Dari tabel diatas maka dapat dilihat potensi dari manajemen waktu penerangan dan utilitas lain didapat potensi penghematan sebesar \pm 4,3 Juta rupiah dan efisiensi energi sebesar \pm 3745,7 kWh

Pada Tata Udara

Dari hasil pelaksanaan audit pada sistem tata udara, diperoleh beberapa potensi penghematan sebagai berikut:

1. Manajemen operasi AC

Perbaikan manajemen operasi tata udara dan perbaikan efektivitas jam kerja. Dalam hal ini mahasiswa yang perlu dilakukan adalah:

- Kesepakatan jam operasi sistem AC.
- Prosedur permintaan operasi AC di luar jam belajar (06.00 - 16.00)

Untuk rekomendasi manajemen operasi tata udara diusulkan untuk menambahkan sistem kontrol otomatis dengan Kontaktor Timer pada panel AC pukul 06.00 sd 16.00 (10jam) pada hari belajar (Senin s.d Jumat) untuk mahasiswa tetap tinggal di Kampus, jika agar mengimplemantasi pola tersebut maka diperkirakan akan menghemat energi sebesar ± kWh dan biaya dalam diperkirakan akan mengoptimalkan efisiensi operasional sebesar ±Rp. 53,6 juta seperti pada tabel 7

Tabel 7 Potensi Penghematan Manajemen Waktu AC

Keterangan	Durasi (Jam)	Energi/(10 Jam)	Energi/Tahun (252 hari)	Cost/hari (800)	Cost/tahun (Rp)	
AC Lt1	10	115,032	28988,064	92025,6	23.190.451	
AC Lt2	10	151,254	38116,008	121003,2	30.492.806	
Total		266,286	67104,072	213028,8	53.683.258	
Persentase P	Persentase Penghematan Energi/Tahun (Keseluruhan)					
Persentase P	42,2%					

2. Pengaturan setting suhu AC

Setting suhu AC pada Gedung Asrama Vyatra I PEM Akamigas sebagian besar dibawah suhu seting standar 25°C. Kenaikan seting suhu AC sebesar 1°C dapat menghemat pemakaian energi sebesar ±3%. Dengan Asumsi penurunan sebesar 3% maka dapat diproyeksikan potensi penghematan dari seting suhu adalah, sebagai berikut.

Tabel 8 Potensi Penghematan Pemeliharaan AC

Keterangan	Nilai
Total Asumsi Gedung Vyatra I	159044,15 kWh
AC	143139,74 kWh
Manajemen 10 Jam	67104,07 Kwh
Pengaruh Seting Suhu 3%	2281,07 kWh
Penghematan	Rp 1.824.856

3. Pemeliharaan AC

Penggunaan peralatan pendingin AC bekerja dengan baik dengan rentang waktu sampai dengan lima tahun. Jika pemeliharaan dilakukan dengan baik maka umur AC tersebut dapat lebih dari 5 tahun, berdasarkan konfirmasi telah melakukan pemeliharaan AC secara rutin dengan rentang 3 (tiga) kali dalam setahun dan sudah dilaksanakan dengan baik walaupun ada beberapa ruangan yang suhunya dirasa kurang nyaman berdasarkan pengukuran suhu

Publisher: Politeknik Negeri Jember

4. Penggantian teknologi AC

Dari hasil audit AC yang digunakaan saat ini masih konvensional,diusulkan untuk beralih ke sistem VRV yang lebih efisien,

Rekomendasi

Dari hasil pelaksanaan Audit Energi yang dilakukan di Asrama Vyatra I PEM Akamigas. Langkah peningkatan efisien energi ini dikelompokan menjadi langkah berbiaya no/low cost, medium cost dan high cost. Ada 3 Skenario yaitu:

 Skenario I Meliputi Manajemen Operasi Tata Cahaya, AC dan Pemasangan PLTS Rooftop seperti pada tabel 9

Tabel 9. Skenario I

No	Usulan implementasi Penghematan Energi	Potensi Penghematan Energi per tahun (kWh/tahun)	Potensi Penghematan Biaya per Tahun (Rp/tahun)	Perkiraan Biaya Investasi (Rp)	Penurun an Emisi (Ton CO2 ek) FE 0,83 kg CO2/kWh	Simple Payback Period (tahun)	Kriteria
Т	SISTEM TATA CAHAYA						
1	Manajemen Operasi Lampu dengan penambahan kontaktor dan timer di panel MDP Vyatra 1 (08.00-16.00)	3.746	2.996.582	2.000.000	3,11	1,5	low Cost
Ш	SISTEM TATA UDARA						
1	Manajemen Operasi AC dengan penambahan kontaktor dan timer di panel MDP Vyatra 1 (06.00-16.00)	67.104	53.683.258	2.000.000	55,70 0,04		low Cost
2	Pengaturan setting suhu AC	2.281	1.824.856	Willingness	1,89		No Cost
Ш	PEMASANGAN PLTS ROOFTOP						
1	Pemasangan PLTS Rooftop	147.658	118.126.400	1.950.000.000	122,56	16,5	High Cost
IV	SISTEM KELISTRIKAN						
1	Pompa Air	N/A	N/A	10.000.000	Sistem	ngan Toren Kontrolnya nalkan Umu	Guna
2	Pencatatan kwh Meter Asrama Vyatra 1	N/A	N/A	N/A	PIC Pend	atatan kWh	/ Bulan
Tota	Potensi Penghematan Energi	220.789	Rp 176.631.096	1.954.000.000	183,25		
Konsumsi Energi Asrama Vyatra I Konsumsi Energi Keseluruhan Presentase PPE Terhadap Asrama Vyatra I		159.044	Rp 127.235.320				
		1.733.874	Rp 1.399.726.760	* Kelebihan energi PLTS atap akan mengurang			
		139%	139%	tagihan listrik sec 1	ara keselurul ID Pelangga		ung dalam
Pres	entase PPE Terhadap Keseluruhan	13%	13%				

2. Skenario II Meliputi Penggantian Teknologi AC & Pemasangan PLTS Rooftop seperti pada tabel 10

Tabel 10. Skenario II

No	Usulan implementasi Penghematan Energi	Potensi Penghematan Energi per tahun (kWh/tahun)	Potensi Penghematan Biaya per Tahun (Rp/tahun)	Perkiraan Biaya Investasi	Penurunan Emisi (Ton CO2 ek) FE 0,83 kg CO2/kWh	Simple Payback Period (tahun)	Kriteria	
1	SISTEM TATA UDARA							
1	Penggantian Teknologi AC (BAU)	89.462	71.569.868	951.500.000	74.253,738	13,29	High Cost	
П	PEMASANGAN PLTS ROOFTOP							
1	Pemasangan PLTS Rooftop	147.658	118.126.400	1.950.000.000	122.556,140	16,51	High Cost	
Ш	SISTEM KELISTRIKAN							
1	Pompa Air	N/A	N/A	10.000.000	Sistem K	Pemasangan Toren Air dan Sistem Kontrolnya Guna Memaksimalkan Umur Pompa		
2	Pencatatan kwh Meter Asrama Vyatra 1	N/A	N/A	N/A	PIC Penca	tatan kWh	Bulan	
Tot	al Potensi Penghematan Energi	237.120	Rp. 189.696.268	2.901.500.000	74.253,738			
Kor	nsumsi Energi Asrama Vyatra I	159.044,15	Rp. 127.235.321			-		
Kor	nsumsi Energi Keseluruhan	1.733.874	Rp. 1.399.726.760		energi PLTS ata k secara keselu			
Vya	sentase PPE Terhadap Asrama tra i	149%	149%	dala	am 1 ID Pelang	gan PLN)		
	sentase PPE Terhadap seluruhan	14%	14%					

3. Skenario III meliputi Skenario Penggantian Teknologi AC & Pemasangan PLTS, seperti pada tabel 11

Tabel 11 . Skenario III

No	Usulan implementasi Penghematan Energi	Potensi Penghematan Energi per tahun (kWh/tahun)	Potensi Penghematan Biaya per Tahun (Rp/tahun)	Perkiraan Biaya Investasi	Penurunan Emisi (Ton CO2 ek) FE 0,83 kg CO2/kWh	Simple Payback Period (tahun)	Kriteria
Т	SISTEM TATA CAHAYA						
1	Manajemen Operasi Lampu dengan penambahan kontaktor dan timer di panel MDP Vyatra 1 (08.00-16.00)	3.746	2.996.582	2.000.000	3,11	1,5	low Cost
П	SISTEM TATA UDARA						
1	Manajemen Operasi AC dengan penambahan kontaktor dan timer di panel MDP Vyatra 1 (06.00-16.00)	67.104	53.683.258	2.000.000	55.696,380	0,04	low Cost
2	Penggantian Teknologi AC VRV (16.00-06.00)	47.522	38.017.832	951.500.000	39.443,501	25	High Cost
Ш	PEMASANGAN PLTS ROOFTOP						
1	Pemasangan PLTS Rooftop	147.658	118.126.400	1.950.000.000	122.556,140	16,51	High Cost
IV	SISTEM KELISTRIKAN						
1	Pompa Air	N/A	N/A	10.000.000	Pemasangan Toren Air dan Sistem Kontrolnya Guna Memaksimalkan Umur Pompa		
2	Pencatatan kwh Meter Asrama Vyatra 1	N/A	N/A	N/A	PIC Pencatatan kWh / Bulan		Bulan
Total Potensi Penghematan Energi		266.030	212.824.072	2.901.500.000	217.699,129		
Konsumsi Energi Asrama Vyatra I		159.044	127.235.321	* Kelebihan energi PLTS atap akan mengurangi tagihan listrik secara keseluruhan (10 Gedung dalam 1 ID Pelanggan PLN)			
Konsumsi Energi Keseluruhan		1.733.874	1.399.726.760				
Presentase PPE Terhadap Asrama Vyatra I		167%	167%				
Presentase PPE Terhadap Keseluruhan		15%	15%				

5. Kesimpulan

Berdasarkan hasil audit energi di Asrama Vytra1 dapat kami simpulkan sebagai berikut:

Nilai Intensitas Konsumsi Energi(IKE) untuk gedung Asrama Vyatra 1 berdasarkan pemakaian energi base line tahun 2021,2022,2023 didapatkan nilai IKE ratarata 144,31 kWh/m²/tahun. Nilai ini diatas nilai benchmarking Gedung Perkantoran sebesar 102 kWh/m2/tahun,(Balai Besar Teknologi Konversi Energi B2TKE BPPT, 2020). maka ini akan berdampak surplus. Rekomendasi dari hasil pelaksanaan Audit Energi yang dilakukan di Asrama Vyatra I PEM Akamigas, terdapat 3 skenario seperti pada pembahsan.

6. Ucapan Terima Kasih

Ucapan terima kasih dari penulis kepada Politeknik Energi dan Mineral Akamigas yang telah memberikan fasilitas dan pendanaan,serta teman-teman yang telah bekerjasama untuk kegiatan pengabdian ini.

7. Daftar Pustaka

- [1] N. Khakiki and P. Yulianto, "Analisis Audit Energi Listrik Gedung Igd Dan Ibs," vol. 24, no. 2, pp. 114–137, 2023.
- [2] R. Hidayat, I. Hasyim Rosma, A. Hamzah, H. Marpaung, and A. Ika Putra, "Audit Energi Listrik pada Gedung Masjid Arfaunnas Universitas Riau dan Potensi Penghematan Konsumsi Energi Listrik Berbasis Internet of Things," *BATOBO J. Pengabdi. Kpd. Masy.*, vol. 2, no. 1, pp. 51–60, 2024, doi: 10.31258/batobo.2.1.51-60.

Publisher: Politeknik Negeri Jember

- [3] L. S. Ariyanti, E. Mulyana, and B. Trisno, "Analisis Audit Energi Dan Kebutuhan Cahaya Pada Bangunan Pasar Modern Bsd City Tangerang Selatan," *Transm. J. Ilm. Tek. Elektro*, vol. 26, no. 1, pp. 24–30, 2024, doi: 10.14710/transmisi.26.1.24-30.
- [4] M. Arif Rohman Hakim 1, Ir. H. Budi Sukoco, MT 2, dan Gunawan ST, "AUDIT ENERGI LISTRIK PADA GEDUNG FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG TugasSyarif, Muhamad," *J. Chem. Inf. Model.*, vol. 53, no. 8, p. 8, 2013.
- [5] Muhammad Fahmi Hakim, Ahmad Hermawan, Fandi Kurniawan, and Kumala Mahda Habsari, "Audit Energi dan Rekomendasi Penghematan Energi Listrik di Gedung Rumah Sakit," *Elposys J. Sist. Kelistrikan*, vol. 10, no. 2, pp. 136–141, 2023, doi: 10.33795/elposys.v10i2.2522.
- [6] M. Firdausi, "Evaluasi Kinerja Energi untuk Penerangan di Bangunan Gedung PT TSH," vol. 34, no. 3, pp. 36–45, 2024.
- [7] Kementerian ESDM, "Capaian Kinerja Sektor ESDM tahun 2021 dan Rencana tahun 2022," Website Kementeri. ESDM, p. 43, 2022, [Online]. Available: https://www.esdm.go.id/assets/media/content/c ontent-capaian-kinerja-sektor-esdm-tahun-2021-dan-rencana-tahun-2022.pdf
- [8] S. N. 2024 Fajri, N. Busaeri, and I. Taufiqurrahman, "E-JOINT (Electronica and Electrical Journal of Innovation Technology) Audit Energi Listrik pada Bangunan Gedung SMKN 3 Kuningan," vol. 05, no. 01, pp. 29–34, 2024.
- [9] munawar ali aprilia putri ningrum, "Jurnal 9 Audit Energi Untuk Pencapaian Penghematan Penggunaan Energi Pada Bangunan Gedung Perkantoran.pdf."
- [10] A. Sophian, "RISALAH KEBIJAKAN: Konservasi Energi di Lingkungan Instansi Pemerintah pada Gedung Eureka 1 dan 2 Badan Pengawas Obat dan Makanan," no. December 2022, 2023, doi: 10.13140/RG.2.2.33222.28482.
- [11] PRESIDEN and R. INDONESIA, "Pp No 33 Tahun 2023," no. 167373, p. 40, 2023.
- [12] R. Wiryadinata *et al.*, "Analisis Audit Energi Listrik pada Gedung Rumah Sakit Hermina Ciruas," *Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer*, vol. 13, no. 1, p. 62, 2024, doi: 10.36055/setrum.v13i1.25728.
- [13] A. D. Muhammad Noor Hadi, Alvera Apridalianti, "Jurnal 8 Audit Energi Sistem Pencahayaan pada Gedung A.pdf."

- [14] A. Lukman, "Audit Energi Pemakaian Air Conditioning (AC) Di Gedung Dinas Pekerjaan Umum Kab. Ketapang Propinsi Kalimantan Barat," *Elkha*, vol. 10, no. 1, p. 1, 2019, doi: 10.26418/elkha.v10i1.25202.
- [15] A. Prastyawan, A. I. Agung, S. I. Haryudo, and A. C. Hermawan, "Analisis Audit Energi Listrik pada Gedung Jurusan Listrik Elektro Universitas Negeri Surabaya," *J. Tek. Elektro*, vol. 10, no. 1, pp. 237–243, 2020.
- [16] M. M. Ansor, Purwoharjono, and Fitriah, "Analisis Audit Energi Sistem Pencahayaan dan Tata Udara Di Universitas Muhammadiyah Pontianak," *Tek. Elektro*, pp. 3–8, 2022.
- [17] C. Setiawan, C. Rangkuti, and A. Bhikuning, "Analisa Audit Energi Untuk Optimalisasi Pemakaian Listrik Air Conditioning Pada Gedung Perkantoran X Di Jakarta," *J. Penelit. Dan Karya Ilm. Lemb. Penelit. Univ. Trisakti*, vol. 9, pp. 66–81, 2024, doi: 10.25105/pdk.v9i1.16808.
- [18] W. Genio Shafyyar Fahmi, Diding Suharti, "View of Jurnal 5 Analisis Audit dan Peningkatan Efisiensi Penggunaan Energi Listrik Pada Sistem Pencahayaan .pdf."
- [19] T. E. Btke, "Benchmarking Specific Energy Consumption in the Commercial Building Sector," 2020.