Penerapan Decision Tree dan Neural Network untuk Prediksi Severity Level Pada Kasus Hipertensi di RSUD Khidmat Sehat Afiat (KISA) Depok

Authors

  • Arlien Rona Rafidah Universitas Esa Unggul
  • Mieke Nurmalasari Universitas Esa Unggul
  • Hosizah Hosizah Universitas Esa Unggul
  • Dhiar Niken Larasati Badan Pusat Statistik

DOI:

https://doi.org/10.25047/j-remi.v6i1.4963

Keywords:

Decision Tree, Classification, Neural Network, Severity Level

Abstract

Severity Level is a component of the INA-CBGs code that indicates the severity of a case during treatment, influencing the INA-CBGs tariff rate. The aim of this study is to predict the severity level by implementing decision tree and neural network algorithms using Orange Data Mining. This research was conducted at Khidmat Sehat Afiat Regional Public Hospital in Depok City, utilizing 162 inpatient claim records with primary diagnoses of Hypertension and Hypertensive Heart Disease and secondary diagnoses of CHF, CKD, or both. Prediction was carried out on 114 testing data and 48 training data. Claim data were analyzed using Decision Tree and Neural Network, with testing results showing the highest score in neural network performance with an AUC of 62.5%, CA of 57%, F1 of 56.2%, and precision of 57.7%. Based on calculations from the confusion matrix, the neural network demonstrated better performance, with accuracy at 57.89%, precision at 65.6%, and recall at 80.76%. These results suggest that the neural network is recommended for predicting the severity level of hypertension cases at Khidmat Sehat Afiat Hospital, as it achieves higher accuracy than the Decision Tree.

References

F. Z. Luthfiyah, “Hubungan Pelayanan Rawat Jalan Pasien Dengan Premi Badan Penyelenggara Jaminan Sosial (BPJS) Berdasarkan UU No 24 Tahun 2011,” Nusant. J. Pendidikan, Seni, Sains dan Sos. Humanioral, vol. 1, no. 1, pp. 1–15, 2022.

S. Puspitorini, S. Kusumadewi, and L. Rosita, “SPK Penentuan Severity Level Kasus Penyakit Dengan Pohon Keputusan,” in Seminar Nasional Informatika Medis (SNIMed) 2016, 2016, pp. 16–32.

I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin,” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 118–125, Aug. 2022, doi: 10.51977/jti.v4i2.762.

Kementerian Kesehatan Republik Indonesia, Peraturan Menteri Kesehatan Nomor 76 Tahun 2016 tentang Pedoman Indonesian Case Base Groups (INA-CBG) dalam Pelaksanaan Jaminan Kesehatan Nasional. Jakarta: Kementerian Kesehatan Republik Indonesia, 2016.

B. Sedayu, S. Azmi, and R. Rahmatini, “Karakteristik Pasien Hipertensi di Bangsal Rawat Inap SMF Penyakit Dalam RSUP DR. M. Djamil Padang Tahun 2013,” J. Kesehat. Andalas, vol. 4, no. 1, pp. 65–69, Jan. 2015, doi: 10.25077/jka.v4i1.192.

S. Regina, “Gambaran Indikasi Rawat Inap Pasien Hipertensi Di Rumah Sakit Sumber Waras Tahun 2017,” Universitas Tarumanagara, 2018.

I. P. Palupi, S. Sugiarsi, and T. A. Sutrisno, “Analisis Hubungan Kelengkapan Diagnosis Sekunder Dengan Kenaikan Tarif INA-CBGs DiRSUD Pandan Arang Boyolali,” Indones. J. Heal. Inf. Manag., vol. 3, no. 2, pp. 1–7, 2023, doi: https://doi.org/10.54877/ijhim.v3i2.126.

R. H. Pambudi, B. D. Setiawan, and I. Indriati, “Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2637–2643, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1660

A. P. Permana, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 3, pp. 178–188, Sep. 2021, doi: 10.14421/jiska.2021.6.3.178-188.

N. S. El-Jerjawi and S. S. Abu-Naser, “Diabetes Prediction Using Artificial Neural Network,” Int. J. Adv. Sci. Technol., vol. 121, pp. 55–64, 2018, doi: http://dx.doi.org/10.14257/ijast.2018.121.05.

D. T. Wilujeng, M. Fatekurohman, and I. M. Tirta, “Analisis Risiko Kredit Perbankan Menggunakan Algoritma K-Nearest Neighbor dan Nearest Weighted K-Nearest Neighbor,” Indones. J. Appl. Stat., vol. 5, no. 2, pp. 142–148, Oct. 2023, doi: 10.13057/ijas.v5i2.58426.

I. Oktadiana, “Perbandingan Biaya Riil Pada Pasien Diabetes Mellitus Tipe 2 Dengan Tarif INA-CBG’S Di Rumah Sakit Umum Daerah,” J. Farm. Tinctura, vol. 2, no. 2, pp. 42–51, 2021.

E. Pranadjaya, E. S. Pangestu, C. O. Sereati, S. Octaviani, and M. Darmawan, “Perbandingan Algoritma Machine Learning menggunakan Orange Data Mining untuk Klasifikasi Jenis Kendaraan pada Sistem Tilang Digital,” J. Elektro, vol. 17, no. 1, pp. 41–47, Apr. 2024, doi: 10.25170/jurnalelektro.v17i1.5429.

E. Mardiani et al., “Membandingkan Algoritma Data Mining Dengan Tools Orange untuk Social Economy,” Digit. Transform. Technol., vol. 3, no. 2, pp. 686–693, Nov. 2023, doi: 10.47709/digitech.v3i2.3256.

A. Hartanto and Thoyyibah, “Implementasi Orange Data Mining Untuk Prediksi Penderita Diabetes,” in Prosiding Seminar Kecerdasan Artifisial, Sains Data, dan Pendidikan Masa Depan PROKASDADIK, Program Studi Teknik Informatika, Program Pascasarjana, Universitas Pamulang, 2023, pp. 20–23.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, pp. 133–144, Nov. 2021, doi: 10.21107/nero.v6i2.237.

M. M. Santoni, N. Chamidah, and N. Matondang, “Prediksi Hipertensi menggunakan Decision Tree, Naïve Bayes dan Artificial Neural Network pada software KNIME,” Techno.Com, vol. 19, no. 4, pp. 353–363, Nov. 2020, doi: 10.33633/tc.v19i4.3872.

J. Liang, “Confusion Matrix: Machine Learning,” POGIL Act. Clear. J., vol. 3, no. 4, 2022, [Online]. Available: https://pac.pogil.org/index.php/pac/article/view/304

S. Pramana, B. Yuniarto, S. Mariyah, I. Santoso, and R. Nooraeni, Data Mining dengan R: Konsep Serta Implementasi. Bogor: In Media, 2018.

Downloads

Published

2024-12-08

How to Cite

Rafidah, A. R., Nurmalasari, M., Hosizah, H., & Larasati , D. N. (2024). Penerapan Decision Tree dan Neural Network untuk Prediksi Severity Level Pada Kasus Hipertensi di RSUD Khidmat Sehat Afiat (KISA) Depok. J-REMI : Jurnal Rekam Medik Dan Informasi Kesehatan, 6(1), 9–18. https://doi.org/10.25047/j-remi.v6i1.4963

Issue

Section

Artikel

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.