
Rizky Alfanio Atmoko: An Encryption Method of 8-Qubit States Using Unitary Matrix and
Permutation

74
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Received November 9th, 2024; accepted December 23th, 2024. Date of publication December 30th, 2024
Digital Object Identifier: https://doi.org/10/25047/jtit.v11i2.5517

An Encryption Method of 8-Qubit States Using

Unitary Matrix and Permutation

RIZKY ALFANIO ATMOKO1, ERIK YOHAN KARTIKO2, AGUNG TEGUH SETYADI3

1Universitas Jember, Jember, Jawa Timur, Indonesia

2 Universitas Jember, Jember, Jawa Timur, Indonesia

3 Politeknik Electronika Negeri Surabaya, Surabaya, Jawa Timur, Indonesia

CORESPONDING AUTHOR: RIZKY ALFANIO ATMOKO (email:rizkyaatmoko@unej.ac.id)

ABSTRACT The paper explores the methods for encrypting and decrypting an 8-qubit states of quantum

system using unitary and permutation matrix. Our approach utilizes a unitary matrix to create a new

superpositions of an encrypted 8-qubits states. By applying a permutation matrix, we shuffle the state vectors,

adding an additional layer of security. The encryption process will be performed on the encrypted state 𝑋 using

the formula 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃, where 𝑋 is the original state vector, 𝑋 is the unitary matrix, and 𝑃 is the permutation

matrix. To ensure the total probability remains normalized, we showed that the resulting new 8-qubits state 𝑋′
remains normalized. The decryption process is achieved by applying the following operations, 𝑋 = 𝑋′ ⋅ 𝑃𝑇 ⋅
𝑈† retrieving the original state. This paper also is showing that the original quantum state can be accurately

recovered post-decryption. This highlights the robustness of our approach in maintaining the integrity of

quantum information. Furthermore, we aim to create 𝑛 block for 𝑛 different 8-qubits state using a different key

in each block from the initial unitary matrix 𝑈 and permutation 𝑃. In order to implement these methods, we

need to generate a new unitary matrix for each block. Either by random pick or using iteration. In fact, we

showed how to create the new unitary matrix using iteration for each block. Here we showed that the new

generated matrix 𝑈𝑃 is also a unitary matrix so that we can use iteration proses to create a new unitary matrix

in each 𝑛 block for 𝑛 different 8-qubits state. Here we generate the unitary matrix 𝑈𝑛 from 𝑈𝑛−1 as key in

block 𝑛. This result in the encryption of each block for each 8-qubits state using the formula 𝑋𝑛
′ = 𝑋𝑛 ⋅ 𝑈𝑛 ⋅ 𝑃

resulting in a more robust security. The encryption/decryption scheme we referenced can theoretically be

implemented on modern quantum hardware but verifying operations involving hundreds of qubits would

demand rigorous calibration and error correction.

KEYWORDS: Qubits, Unitary Matrix, Hadamard Matrix, Permutation Matrix, Superposition,

Cyber security

I.INTRODUCTION

In 1982, R. P. Feynman [1]] introduced an

interesting concept that laid the groundwork for

modern quantum computing. His exploration of

simulating physical processes with computers

proposed that classical computers might be

inadequate for simulating quantum phenomena

efficiently. The surge in quantum computing has

revolutionized how we approach data encoding and

security such as Shor’s Algorithms [2] to break a

certain security system that previously was

considered complex. Unlike traditional digital

frameworks that rely on binary digits (0s and 1s),

quantum systems leverage qubits. These qubits can

exist in 0, 1, or any complex superposition of both,

enabling more intricate and powerful data operations

[3]. To represent alphabets (like A-Z), quantum

computers use encoding methods that map each

letter to a unique binary sequence, similar to ASCII

encoding in classical systems. However, in quantum

systems, these binary representations can be placed

into superposition states, allowing for more complex

operations [4]. Qubits can represent alphabets by

encoding them in states that combine multiple

quantum states simultaneously. The multiple qubits

also explained in [4] including the 8-qubits system.

In classical computing however, letters are

represented using 8-bit binary sequences.

Conversely, in quantum computing, the concept

shifts to an 8-qubit system. This system consists of

8 individual qubits, each capable of existing

simultaneously in a superposition of the states |0⟩
and |1⟩. This superposition allows quantum systems

to encode information in a more various way than

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 11 No. 2 Tahun 2024 ISSN: 2580-2291

75
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

classical bits, enhancing both the complexity and

potential capabilities of data representation and

manipulation within quantum system. As the

number of qubits increases, the dimension of the

state space increases exponentially. As explained

before in [3], in general, an 8-qubit system has a

state space of

|Ψ⟩ = ∑𝑐𝑖|𝑖⟩

255

𝑖=1

 The 𝑖⟩ in here represent one of the 256

possible basis state combinations of the qubits, and

𝑐𝑖 are complex coefficients corresponding to the

probability amplitudes for the basis state 𝑖⟩ and each

𝑐𝑖 must satisfy the normalization condition:

∑|𝑐𝑖|
2

255

𝑖=0

 = 1

For example, a letter could be mapped to a

specific quantum state that corresponds to a binary

encoding like '01000001' for 'A'. In this case, the 𝑐𝑖

of '01000001' will tell us the probability this 8-qubits

will result in ‘A’ when measured.

In [5] the classical cryptography and some of

the coding theory and method were explained. One

fundamental area of study involves the development

and enhancement of classical encryption methods to

fit within quantum system. This paper explores the

combination of unitary matrix and permutation

transformations to encode 8-qubit states in matrix

form, drawing connections between traditional

binary code theory and quantum system.

 Binary code theory underpins much of

classical data encryption, such as in [5] where data

is represented and manipulated using sequences of

binary digits also knows as bits. As a simple

example, shift cipher, or Caesar cipher, is one of the

simplest and oldest encryption techniques. It works

by shifting each letter of the plaintext a fixed number

of places in the alphabet.

In the realm of binary code theory, our

encryption method adapts with traditional

encryption methods while incorporating layered

security strategies. Previous works, such as the Hill

cipher [11], which also be explained in [5], is a

matrix transformation cipher that uses linear algebra

principles. The plaintext is divided into blocks of

letters, and each block is represented as a vector.

These vectors are then multiplied by an invertible

matrix (key matrix) to produce ciphertext. In the

binary context, this method can be adapted to handle

matrices over binary fields, extending its

applicability to digital data encoding which

employed matrix multiplication to secure data,

working on blocks of binary-coded plaintext. While

effective for classical data, it lacked the state

transformations present in our approach. As

demonstrate before in [6] to enchant the encryption

to be more robust, permutation codes can be applied

to enhance data security by rearranging the positions

of data bits based on a specific permutation pattern,

creating a layer of obfuscation. Permutation

matrices are commonly employed in constructing

permutation codes. They are binary matrices with

exactly one entry of 1 in each row and column and

zeros elsewhere, representing a reordering of vector

components. Here, we want to create a new matrix

key in each block so that the encryption key for each

block is different for each other. We can implement

this method by combining the concept of Hill cipher

techniques and permutation codes to allows for the

creation of more robust encryption mechanisms. The

method involving to represent the code as a matrix

form as explained in[7].

 As in [12] explored permutation ciphers

applied to binary data, emphasizing reordering to

conceal information. In contrast, our method

advances this concept by integrating permutations

with unitary matrices, creating a secure system for

8-qubits-encoded information that remains balanced

and retains properties essential for decoding without

data loss.

Additionally, in [12], the combination of

different ciphers to bolster data protection was

highlighted, often involving hybrid block and stream

techniques [16] to thwart cryptanalysis. Our

framework achieves similar robustness by

generating unitary matrices iteratively (e.g., 𝑈𝑛 =
 𝑓(𝑈𝑛−1), enhancing each encryption cycle. This

produces a distinct key for each block of binary data.

This layered approach ensures decoding can only be

achieved through the correct application of each key

in each block, maintaining data security in binary

code systems.

In this paper will explain an approach that

adapts these classical methods for encoding

information within 8-qubits quantum systems,

specifically leveraging unitary matrix and

permutation transformation to represent and

manipulate qubit states in matrix form. The purpose

of our research is to explore and enhance the

application of binary coding theory in encryption

and decryption mechanisms by employing matrix-

based methodologies within an 8-qubit system. We

will integrate the unitary matrix 𝑈 as a primary

component within the Hill cipher framework,

combined with a permutation matrix 𝑃, forming the

encryption formula 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃 . Additionally,

we aim to extend this approach to recursive

encryption by constructing a sequence of blocks,

where 𝑈𝑛 serves as the key for block 𝑛. Our research

will apply this advanced matrix-based structure to an

8-qubit system, ensuring that decryption is well-

defined, thereby demonstrating the robustness of

this approach for maintaining data integrity and

enhancing cryptographic security.

As in quantum computing, unitary matrices

[18] play a crucial role in ensuring the correct

evolution and transformation of quantum states. As

explained is [8] [10] [17] A unitary matrix 𝑈 is a

Rizky Alfanio Atmoko: An Encryption Method of 8-Qubit States Using Unitary Matrix and
Permutation

76
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

complex matrix that satisfies the condition 𝑈𝑈† =
𝑈†𝑈 = 𝐼 . 𝑈† is the conjugate transpose of 𝑈 and 𝐼

is the identity matrix. This property guarantees the

preservation of the norm of vectors, which is vital

for maintaining the probabilistic interpretation of

quantum states during computations. Unitary

matrices are fundamental in quantum mechanics

because they describe quantum gates that perform

reversible transformations on qubits. These

transformations are essential for the accurate

manipulation of quantum information without losing

coherence. For instance, in [3] [4] the Hadamard

gate, represented by a unitary matrix, creates

superpositions, a basic requirement in many

quantum algorithms. The norm-preserving property

of unitary matrices ensures that the probabilities of

all possible outcomes in a quantum measurement

always sum to one, reflecting the conservation of

quantum information. This reversibility is also

crucial as it allows any quantum operation to be

undone, a necessary feature in complex quantum

computations and algorithms.

Unitary matrices are indispensable in

quantum algorithms such as Shor's algorithm for

factoring integers [2]. These algorithms rely on

unitary transformations to manipulate qubits and

perform computations exponentially faster than

classical algorithms. Additionally, unitary matrices

are central to quantum error correction codes, as in

[4] which protect quantum information against

decoherence and other forms of quantum noise.

These codes use unitary operations to encode and

decode quantum information, allowing errors to be

detected and corrected, thus preserving the integrity

of the quantum computation.

The purpose of our research :

The purpose of our research is to delve

deeply into and advance the application of binary

coding theory in encryption and decryption

processes by utilizing matrix-based methodologies

within an 8-qubit quantum computing system. This

exploration is motivated by the need to develop

more robust, secure, and efficient cryptographic

methods that can leverage the unique properties of

quantum mechanics.

We propose the integration of the unitary

matrix 𝑈 as a fundamental component within the

Hill cipher framework. The Hill cipher, a classical

encryption method, typically involves matrix

multiplication to transform blocks of plaintext into

ciphertext. By using the unitary matrix, which in

quantum computing refers to unitary matrices as a

transformation of multiple-qubits states, we adapt

this classical method to the quantum domain.

Unitary matrices are essential in quantum computing

because they preserve the norm of the quantum state,

ensuring that the quantum system remains in a valid

state throughout the computation process.

To further enhance the security of our

encryption method, we combine the unitary matrix

𝑈 with a permutation matrix 𝑃. The permutation

matrix 𝑃 reorders the elements of the vector it

multiplies, adding an additional layer of complexity

and security to the encryption process as

demonstrate in [17]. We will show that the resulting

encryption model can be expressed as 𝑋′ = 𝑋 ⋅ 𝑈 ⋅
𝑃𝑋′ = 𝑋 . 𝑈 . 𝑃, where 𝑋 is the initial quantum

state, and 𝑋′ is the encrypted state.

One of the key innovations of our research is

the introduction of a recursive structure for the

encryption process. This involves creating a

sequence of encryption blocks, with each block say

block 𝑛 having its own unique key matrix 𝑈𝑛. This

iterative approach enhances security by ensuring

that each block of data is encrypted with a different

transformation, making it significantly more

difficult for an adversary to decipher the entire

dataset if they manage to decrypt one block. We will

show how to do this recursive so that that the

encryption for block 𝑛 can be defined as 𝑋𝑛
′ = 𝑋𝑛 ⋅

𝑈𝑛 ⋅ 𝑃, where n = 1, 2, 3,…. For instance, encoding

an 8-bit message 𝑋 into binary and encrypting it

involves transforming it with 𝑈 and scrambling it

with 𝑃. Decryption shows that applying 𝑃𝑇followed

by 𝑈† retrieves 𝑋, demonstrating consistency with

binary code theory principles while achieving

enhanced data protection.

Our research also focuses on ensuring that

the decryption process is well-defined and reliable.

The decryption must correctly reverse the

transformations applied during encryption to

retrieve the original data without loss of information.

This involves applying the inverse of the

permutation matrix 𝑃, that in [14] can be treated as

𝑃𝑇 , and the conjugate transpose of the unitary matrix

𝑈, denoted as 𝑈† . Thus, the decryption process can

be described as 𝑋 = 𝑋′ ⋅ 𝑃𝑡 ⋅ 𝑈†.

Given the properties of the 8-qubit system,

we illustrate that a Hadamard matrix [9] can be

effectively used as the unitary matrix 𝑈. The

Hadamard matrix is widely used in quantum

computing for creating superpositions, which are a

foundational aspect of quantum computation. By

integrating the Hadamard matrix into our encryption

sequence, we can leverage its ability to transform

quantum states in a way that maximizes their

informational entropy, further enhancing the

security of the encrypted data.

Through practical examples, we demonstrate

how our method integrates the Hadamard matrix for

the encryption sequence. We provide detailed steps

and implementations in Python to verify and explain

the outcomes, ensuring that the theoretical

underpinnings of our approach are grounded in

practical, reproducible results.

Our paper showed the robustness of this

combined method for maintaining data integrity and

enhancing cryptographic security. By leveraging the

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 11 No. 2 Tahun 2024 ISSN: 2580-2291

77
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

principles of binary coding theory and quantum

mechanics, we aspire to create a sophisticated

encryption framework that is resilient against

contemporary cryptographic attacks and poised to

withstand future developments in quantum

computing

Then as described above, the main purpose of

our research is to introduce an advance the

application of binary coding theory in encryption

and decryption processes to an 8-qubits system of

quantum computing by we combine the unitary

matrix 𝑈 with a permutation matrix 𝑃 and we will

show that the resulting encryption model can be

expressed as 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃𝑋′ = 𝑋 . 𝑈 . 𝑃, where 𝑋

is the initial quantum state, and 𝑋′ is the encrypted

state. Furthermore, a recursive structure for the

encryption process can be made. We will show how

to do this recursive so that that the encryption for

block 𝑛 can be defined as 𝑋𝑛
′ = 𝑋𝑛 ⋅ 𝑈𝑛 ⋅ 𝑃, where

𝑛 = 1, 2, 3, ….. This involves creating a sequence of

encryption blocks, with each block say block 𝑛

having its own unique key matrix 𝑈𝑛. This iterative

approach enhances security by ensuring that each

block of data is encrypted with a different

transformation, making it significantly more

difficult for an adversary to decipher the entire

dataset if they manage to decrypt one block.

Furthermore, we will create an example of this

unitary matrix using the Hadamard matrix, as

described in [20], and implemented this in Python as

an example. The resulting program encrypts and

decrypts using the Hadamard matrix as the unitary

matrix and random permutations as the keys. This

practical implementation demonstrates the

feasibility and effectiveness of our proposed

method, providing a robust solution for secure

quantum state encryption.

II.METHOD

In classical computing, each bit in a binary

sequence corresponds directly to a single qubit when

represented in quantum form [5]. Each bit of the

classical binary representation can be represented by

a qubit. For the letter 'A', which is 01000001, we

would need an 8-qubit register where each qubit

represents one bit of the binary string. If a quantum

algorithm required processing multiple letters or

data, qubits could be set in a superposition state such

as |ψ⟩ = α|01000001⟩ + β|01000010⟩ +
γ|01000011⟩. With the asumtion that α2 + β2 +
 γ2 = 1 [4].

To fully utilize quantum operations and

encryption methods, it is essential to represent the

state of an 8-qubit system in matrix form. An 8-qubit

system can be described as a state vector in a 256-

dimensional complex vector space, given that there

are 28 =  256 possible combinations of binary

states for the qubits [4]. This representation allows

for advanced operations, such as linear

transformations as in [8], which are foundational for

quantum computation and encryption algorithms.

Each basis state 𝑖⟩ in an 8-qubit system corresponds

to a unique combination of eight bits, where 𝑖 ranges

from 0 to 255. To represent the state |Ψ⟩ in matrix

form, we construct a column vector of size 256 × 1.
Each element of this vector corresponds to one of the

basis states and its associated probability amplitude.

In general, the state vector could be written as:

 |Ψ⟩ =

[

𝑐0

𝑐1

⋮
𝑐254

𝑐255]

.

Our result :

In this paper we will show how do an

encryption with a unitary transformation to a

quantum state to securely encode information. To

achieve this, we need to define a 256 × 256 unitary

matrix 𝑈. A unitary matrix 𝑈 is a complex matrix

that satisfies the condition 𝑈𝑈† = 𝑈†𝑈 = 𝐼 . 𝑈† is

the conjugate transpose of 𝑈 and 𝐼 is the identity

matrix [8]. This is obvious from the definition that

𝑈−1 = 𝑈† . Using the unitary matrix 𝑈, we will

perform the encryption while preserving the

normalization condition of the quantum state. This

ensures that the total probability of all possible states

remains 1.

In the next step, we will use a permutation

matrix 𝑃. A permutation matrix 𝑃 is a special type

of square matrix used in various computational and

mathematical applications to rearrange or permute

the elements of a vector or the rows and columns of

another matrix. Permutation matrices are binary

matrices that have exactly one entry of 1 in each row

and each column, with all other entries being 0. This

structure ensures that when a permutation matrix is

multiplied with another matrix or vector, it reorders

the elements according to a specific permutation.

Hence, the inverse of a permutation matrix 𝑃 is the

inverse of the permutation, that is a transpose of 𝑃

denoted by 𝑃⊤.

This The primary objective of this study was

to implement and evaluate the encryption and

decryption of an 8-qubit system using unitary and

permutation matrices. We will the show that the

matrix 𝑈𝑃 remained unitary, allowing the creation

of 𝑛 blocks for 𝑛 different 8-qubit states. The use of

unique unitary matrices for each block prevented

potential security vulnerabilities associated with

using a single key for multiple blocks. The use of the

a unitary matrix, combined with permutation

matrices, provided a robust framework for secure

quantum state encryption. Here we will analyze and

show that the unitary matrix combined with

permutation matrices provides a robust solution for

quantum encryption of state vectors by proofing that

the encryption matrix and the decryption matrix that

Rizky Alfanio Atmoko: An Encryption Method of 8-Qubit States Using Unitary Matrix and
Permutation

78
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

was design as the key encrypted the original 8-qubits

state X to new 8-qubits state X’ and decrypted these

8-qubits state X’ back to the original 8-qubits state

X, adding an additional layer of security. The

encryption is well defined if the resulting X’ is

indeed a 8-qubits state that is a state that has 1 as the

cumulative total value of its constant in every 256

representations. We will show next that the

combination of these matrices ensured that the state

remained well-defined and normalized throughout

the process. The iterative generation of new unitary

matrices 𝑈𝑛 from 𝑈𝑛−1 for each block of 8-qubit

states added an additional layer of security. This

iterative method ensured that each block had a

unique key, enhancing the overall security of the

encryption process.

The decryption process, utilizing the inverse

operations of the permutation and unitary matrices,

demonstrated that the original quantum state could

be accurately recovered. This result validates the

encryption method, as the integrity of the quantum

information was preserved.

To perform the encryption, we will use the

unitary matrix 𝑈 and the permutation matrix 𝑃. The

encryption process can be described by the

following operation 𝑋′ = 𝑋𝑈𝑃. In order for this

operation to be well defined we need to ensure that

the matrix 𝑈𝑃 is also a unitary matrix so that we can

perform the encryption while preserving the

normalization condition of the quantum state. To

proof this we need to proof that the matrix 𝑈𝑃

satisfies (𝑈𝑃)(𝑈𝑃)† = 𝐼. Since 𝑃 is a permutation

matrix and the inverse of 𝑃 is its transpose then we

have that 𝑃† = 𝑃⊤. So that (𝑈𝑃)(𝑈𝑃)† =
𝑈. 𝑃. 𝑃†𝑈† = 𝐼. This complete our proof and

ensuring that the matrix 𝑈𝑃 is indeed a unitary

matrix.

Next, we would like to encrypt any state of

an 8-qubit system using the matrix 𝑈𝑃, where 𝑈 is

an arbitrary unitary matrix and 𝑃 is an arbitrary

permutation matrix. Suppose we have an 8-qubit

system in a specific quantum state, and the matrix

representation of this state is denoted by 𝑋. Let 𝑈 be

an arbitrary unitary matrix and 𝑃 be an arbitrary

permutation matrix. To encode matrix 𝑋, we will

perform the following computation, resulting in the

encrypted state 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃. This operation

ensures that the encoded state 𝑋′ is a valid

representation of an 8-qubit state. We have

previously demonstrated that this matrix 𝑋′ is indeed

well-defined and accurately represents the state of

the 8-qubit system. In other hand we can also

decrypted 𝑋’ to 𝑋 by using the formula 𝑋 = 𝑋′ ⋅ 𝑃𝑇 ⋅
𝑈†.

Furthermore, the previous proof allows us to

create a new unitary matrix 𝑈𝑃 using unitary matrix

𝑈 and permutation matrix 𝑃. Reapplying this

method, we can also create a unitary matrix 𝑈𝑃𝑃.

Here, for each block say for example, block 𝑛, we

have unitary matrix 𝑈𝑃𝑃 … 𝑃 with the number of

matrices 𝑃 equal to 𝑛. This allows as to make an

iteration with the formula as follow, 𝑈𝑛 = 𝑈𝑛−1. In

summarize the encryption of block 𝑛 of the sequence

of 8-qubits state is 𝑋𝑛
′ = 𝑋𝑛 ⋅ 𝑈𝑛 ⋅ 𝑃 and the

decryption of block 𝑛 of the sequence of 8-qubits

state is 𝑋𝑛 = 𝑋𝑛
′ ⋅ 𝑃𝑇 ⋅ 𝑈𝑛

†.

successfully implemented and evaluated an

encryption and decryption method for an 8-qubit

system using unitary and permutation matrices. The

integration of these matrices ensured that the

encryption process remained robust, with the matrix

𝑈𝑃 retaining its unitary properties, allowing for the

creation of multiple encryption blocks. By using

unique unitary matrices for each block, the approach

effectively mitigated security risks associated with

reusing a single key. This combination of unitary

and permutation matrices provided a well-defined

and normalized quantum state throughout the

encryption process. The iterative generation of new

unitary matrices 𝑈𝑛 for each block added an

additional layer of security, ensuring each block had

a distinct key. The decryption process, employing

the inverse operations of the permutation and unitary

matrices, accurately recovered the original quantum

state, validating the encryption method and

preserving the integrity of the quantum information.

This demonstrates the robustness and effectiveness

of the proposed quantum encryption framework.

Compariosn to the previus result :

Please note that the encryption/decryption scheme

we referenced can theoretically be implemented on

modern quantum hardware. However, verifying

operations involving hundreds of qubits would

require rigorous calibration and error correction,

which is beyond the scope of our research. Our focus

is on the theoretical foundation, particularly in

coding theory, and we adapt classical methods for

quantum computing. Specifically, we work with an

8-quantum-state approach. The comparison lies in

our encryption method, which is more secure

because it employs a double-layer encryption

scheme. This method is indeed more robust than

single-layer encryption.

Implementation on Python :

To summarized this write the algorithm as

follows.

Algorithms 1 showed how this method works

using a random unitary matrix.

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 11 No. 2 Tahun 2024 ISSN: 2580-2291

79
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithms 2 showed how this method works

using the iteration process as defined above so that

for each block we generate a new 𝑈𝑛 from the

previous 𝑈𝑛−1 resulting in a new key for the block

𝑛. The recursive proses are done by the matrix

product of unitary 𝑈𝑛−1 and permutation matrix 𝑃

resulting in a more secure encryption proses than

algorithm 1.

To demonstrate how it works we will now try

to write an example by writing a python program for

this method. First, for an 8-qubits we represent this

8-qubits in matrix form 𝑋. Then we need an unitary

matrix 𝑃. We will use a Hadamard matrix for this

unitary matrix 𝑃 as shown in [9] . The Hadamard

matrix 𝑋 for a single qubit is defined as :

𝐻 =
1

√2
(
1 1
1 −1

)

Creating a Hadamard matrix for 28 (which is

256) means constructing a 256 × 256 matrix. The

Hadamard matrix can be recursively generated using

the following formula:

𝐻2𝑛 =
1

√2
(
𝐻2𝑛−1 𝐻2𝑛−1

𝐻2𝑛−1 −𝐻2𝑛−1
)

For 𝑛 = 8 the resulting Hadamard matrix

𝐻256 is a matrix of size 256 × 256. In ython you

can use the Hadamard library to create a Hadamard

matrix.

The final python project will be created as

follows

And the Python program to run the iteration

as defined above are as follows

Rizky Alfanio Atmoko: An Encryption Method of 8-Qubit States Using Unitary Matrix and
Permutation

80
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

The Python code leverages the libraries

numpy and scipy to perform complex matrix

operations essential for quantum state manipulation.

The numpy library is utilized for its powerful

numerical operations, enabling efficient handling of

matrices and vectors, while scipy's hadamard

function provides the Hadamard matrix, known for

its orthogonal properties crucial in quantum

computations.

The function create_permutation_matrix(n)

generates an 𝑛 × 𝑛 permutation matrix. This matrix

is constructed by shuffling the rows such that each

row and column contains exactly one "1", ensuring

that the matrix effectively reorders elements during

multiplication. The function begins by initializing an

𝑛 × 𝑛 zero matrix 𝑃. It then creates a random

permutation of integers from 0 to 𝑛 − 1 and

populates the matrix 𝑃 so that each row places a "1"

in a column specified by the permutation.

The create_hadamard_matrix(n) function

returns an 𝑛 × 𝑛 Hadamard matrix, normalized by
1

√𝑛
. The normalization is essential in quantum

computations to maintain the normalization of

quantum states. The function utilizes scipy's

hadamard(n) to generate the Hadamard matrix and

then divides it by √𝑛 to normalize it.

The create_unitary_matrices(num_qubits)

function aims to generate a unitary matrix by

iteratively multiplying a Hadamard matrix by

permutation matrices, simulating a series of

quantum operations. The function calculates 𝑛 =
 2𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 to accommodate the 8-qubit system,

resulting in a 256-dimensional state vector. It

initializes the matrix 𝑈 with the normalized

Hadamard matrix and iteratively multiplies 𝑈 by a

permutation matrix 𝑛𝑢𝑚𝑞𝑢𝑏𝑖𝑡𝑠 − 1 ×, ensuring the

transformations are complex and effective. The

function returns the final unitary matrix and the last

permutation matrix used.

The encrypt(state, unitary, permutation)

function encrypts the state vector by sequentially

multiplying it with the unitary and permutation

matrices, following the formula 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃. The

function returns the encrypted state vector.

Conversely, the decrypt(encrypted_state, unitary,

permutation) function decrypts the state by applying

the inverse of the unitary and permutation matrices.

The decryption process uses the formula 𝑋 = 𝑋′ ⋅
𝑃𝑡 ⋅ 𝑈𝑡 = 𝑋′ ⋅ 𝑃−1 ⋅ 𝑈−1, where 𝑈−1 is the transpose

conjugate of 𝑈 and 𝑃−1 is both the transpose and

inverse of 𝑃. This ensures the correct retrieval of the

original state vector, maintaining the integrity of the

quantum information.

In an example run, the code handles an 8-

qubit system where 𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 = 8 results in 𝑛 =
256, creating a 256-dimensional state vector. A

complex random vector is generated and normalized

as the original state. During encryption, the state

vector is transformed using the generated unitary

and permutation matrices. The decryption process

then reverses these transformations, with the

decrypted state being compared to the original using

the np.allclose() function. This comparison confirms

that the decrypted state is approximately equal to the

original, validating the success of the encryption-

decryption cycle.

The original output of this program are

complex matrices 256 × 256 both in encrypted state

and in decrypted state in which we needs a lot of

space to visualize but we simplified the output of this

program for a few firs and lastt term and displayed

it as follows :

Encrypted State:

[2.34038526e-02+2.17509742e-02j -6.03981802e-

03+4.56055155e-02j 1.69003759e-

02+8.12635722e-03j -1.10377420e-

02+3.91224586e-02j 4.35575304e-

02+1.04051998e-03j]

Decrypted State: [0.05437421+0.07096808j

0.04757264+0.07325192j .03779137+0.05093413j

0.06995303+0.0141159j …

0.06696016+0.01274167j

0.06921159+0.04156791j

0.01065823+0.01309069j]

Decryption successful, the original

state is recovered.

III.RESULT AND DISCUSSION

In classical cryptography, as described in

references [5], [6], and [7], encryption and

decryption methods are employed to secure binary

Jurnal Teknologi Informasi Dan Terapan (J-TIT) Vol. 11 No. 2 Tahun 2024 ISSN: 2580-2291

81
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

data using various ciphers. The Hill Cipher and

Permutation Method are prime examples of such

techniques. However, these methods are considered

relatively weak when used alone in modern contexts.

To address this, it is essential to develop new

methods or enhance existing ones by combining

them to create stronger encryption and decryption

systems. For instance, studies in [16] and [17]

introduced novel encryption and decryption

methods involving both block and stream ciphers, as

explained in [5], to ensure robust data security.

The primary objective of this study was to

implement and evaluate an encryption and

decryption method for an 8-qubit system from

quantum computing in which was introduced by

Feynman's introduction of the quantum system in

1982 [1], similar to the approaches in [16] and [17].

We utilized unitary and permutation matrices for

encryption, drawing inspiration from [18] to

preserve the unitary of the 8-qubit quantum state,

ensuring that the transformation results remained

valid quantum states [4]. Our results indicate that the

matrix 𝑈𝑃, where 𝑈 is the unitary matrix and 𝑃 is

the permutation matrix, remained unitary. This

facilitated the creation of 𝑛 blocks for 𝑛 different 8-

qubit states. This finding is significant because it

confirms that the unitary nature of the encryption

matrix is preserved, an essential requirement for

quantum computing operations.

By using unique unitary matrices for each

block, we effectively mitigated potential security

vulnerabilities associated with employing a single

key for multiple blocks. This approach aligns with

contemporary cryptographic practices that

emphasize key uniqueness to prevent cross-block

security breaches, as outlined in [5]. The

combination of unitary and permutation matrices

established a robust framework for quantum state

encryption. This dual-matrix method ensures that

state vectors are encrypted securely, adding an extra

layer of protection that is crucial for maintaining

data integrity in quantum communication systems.

Our methodology confirmed that the

combined use of unitary and permutation matrices

ensures the encrypted state remains well-defined and

normalized throughout the process. This is critical

for quantum systems, as maintaining normalization

prevents loss or distortion of quantum information.

The iterative generation of new unitary matrices 𝑈𝑛

from 𝑈𝑛−1 for each block of 8-qubit states added an

additional layer of security. Each block having a

unique key significantly enhances the overall

security of the encryption process, a feature that is

vital for scalable quantum encryption systems. The

key for each of this block can be calculate using the

formula 𝑈1 = 𝑈 and 𝑈𝑛 = 𝑈𝑛−1𝑃. Consequently,

the encryption process is achieved by applying the

following operations 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃 and the

decryption process is achieved by applying the

following operations 𝑋 = 𝑋′ ⋅ 𝑃𝑇 ⋅ 𝑈†. Where 𝑋 is

the original state vector, 𝑋 is the unitary matrix, and

𝑃 is the permutation matrix.

Furthermore, we successfully created an

example of this unitary matrix using the Hadamard

matrix, as described in [21], and implemented this in

Python as an example. The resulting program

encrypts and decrypts using the Hadamard matrix as

the unitary matrix and random permutations as the

keys. This practical implementation demonstrates

the feasibility and effectiveness of our proposed

method, providing a robust solution for secure

quantum state encryption.

These findings highlight the importance of

combining unitary and permutation matrices to

develop secure quantum encryption methods in 8-

qubits system, ensuring that quantum states remain

well-defined and normalized throughout the process.

This approach not only enhances security but also

provides a scalable solution for larger quantum

systems, paving the way for further advancements in

quantum cryptography and secure communication

protocols.

IV.CONCLUSION

In conclusion, as in our main objective, this

paper successfully implemented and evaluated an

encryption and decryption method for an 8-qubit

system introduce an advance the application of

binary coding theory in encryption and decryption

processes to an 8-qubits system of quantum

computing by using unitary and permutation

matrices. The integration of these matrices ensured

that the encryption process remained robust, with the

matrix 𝑈𝑃 retaining its unitary properties, allowing

for the creation of multiple encryption blocks using

the formula 𝑈𝑛 = 𝑈𝑛−1 and 𝑈1 = 𝑈 . we showed

that the resulting encryption model can be expressed

as 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃𝑋′ = 𝑋 . 𝑈 . 𝑃, where 𝑋 is the

initial quantum state, and 𝑋′ is the encrypted state.

The iterative generation of new unitary matrices 𝑈𝑛

for each block added an additional layer of security,

ensuring each block had a distinct key.. We also

successfully created an example of the unitary

matrix using the Hadamard matrix. The resulting

program encrypts and decrypts using the Hadamard

matrix and random permutations as the keys. This

practical implementation demonstrates the existence

of our proposed method.

REFERENCE
[1] R. P. Feynman, “Simulating physics with computers,”

International Journal of Theoretical Physics, vol. 21,
p. 467–488, 1982. DOI : 10.1007/BF02650179

[2] P. W. Shor, “Algorithms for quantum computation:
Discrete logarithms and factoring,” IEEE Symposium

on Foundations of Computer Science (FOCS), vol. 35,

p. 124–134, 1994.
[3] M. C. I. Nielsen, Quantum Computation and Quantum

Information 10th Anniversary Edition, New York,

USA: Cambridge University Press, 2010.
[4] R. LaPierre, Introduction to Quantum, Springer, 2021.

https://doi.org/10.1007/BF02650179
https://ieeexplore.ieee.org/abstract/document/365700

Rizky Alfanio Atmoko: An Encryption Method of 8-Qubit States Using Unitary Matrix and
Permutation

82
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

[5] W. Stallings, Cryptography and Network Security 7th
edition, Pearson, 2017.

[6] O. Goldreich, Foundations of CryptographyBasic

Tools, Cambridge University Press, 2004.
[7] S. X. C. Ling, Coding Theory, Cambridge University

Press, 2004.

[8] S. Roman, Advanced Linear Algebra, USA: Springer
Science+Business Media, LLC, 2008.

[9] C. B.J., “Hadamard Matrix and its Application in

Coding,” International Journal of Mathematics Trends
and Technology (IJMTT), vol. 59, no. 4, pp. 218-227,

2018. DOI : /10.14445/22315373/IJMTT-V59P532

[10] A. Horn, Matrix Analysis, Cambridge University
Press, 2012.

[11] Lester S. Hill, Cryptography in an Algebraic

Alphabet, The American Mathematical
Monthly Vol.36, pp. 306–312, June–July 1929. DOI :

10.2307/2298294

[12] Lester S. Hill, Concerning Certain Linear
Transformation Apparatus of Cryptography, The

American Mathematical Monthly Vol.38, pp. 135–

154, 1931. DOI : 10.2307/2300969
[13] Jeffrey Overbey, William Traves, and Jerzy Wojdylo,

On the Keyspace of the Hill Cipher, Cryptologia,

Vol.29, No.1, pp59–72, 2005 DOI : 10.1080/0161-
110591893771

[14] Savard, John. "Methods of Transposition". A
Cryptographic Compendium. Retrieved 27 June 2023.

[15] Shi, Z., Lee, R.B., Implementation complexity of bit

permutation instructions, Conference Record of the
Thirty-Seventh Asilomar Conference on Conference:

Signals, Systems and Computers Volume 1, 2003.

[16] Irene, G.Z. et al. Enhancing Image Security using
Chaotic Map and Block Cipher, International

Conference on Futuristic Innovations and Challenges

to Diversity Management Emerging Technologies and
Sustainability for Inclusive Industrial Growth, 2015.

[17] Führ., Hartmut; Rzeszotnik., Z,"A note on factoring

unitary matrices". Linear Algebra and Its
Applications. 547: 32–44. 2018. DOI

:/10.1016/j.laa.2018.02.017

[18] Horodecki., R. et al.. Quantum entanglement.
Reviews of Modern Physics. 81 (2): 865–942, 2009.

DOI : 10.48550/arXiv.quant-ph/0702225

[19] Hedayat., A. and Wallis., W. D. Hadamard Matrices
and Their Applications. The Annals of Statistics Vol.

6, No. 6, pp. 1184-1238. 1978. DOI :

10.1214/aos/1176344370

https://doi.org/10.14445/22315373/IJMTT-V59P532
http://dx.doi.org/10.2307/2298294
http://dx.doi.org/10.2307/2298294
http://dx.doi.org/10.2307/2300969
http://dx.doi.org/10.1080/0161-110591893771
http://dx.doi.org/10.1080/0161-110591893771
http://www.quadibloc.com/crypto/pp0102.htm
http://www.quadibloc.com/crypto/pp0102.htm
https://www.academia.edu/569366/Implementation_Complexity_of_Bit_Permutation_Instructions
https://www.academia.edu/569366/Implementation_Complexity_of_Bit_Permutation_Instructions
https://www.academia.edu/569366/Implementation_Complexity_of_Bit_Permutation_Instructions
https://www.ijcaonline.org/proceedings/icfidm2014/number1/21919-5014/
https://www.ijcaonline.org/proceedings/icfidm2014/number1/21919-5014/
https://www.ijcaonline.org/proceedings/icfidm2014/number1/21919-5014/
https://www.ijcaonline.org/proceedings/icfidm2014/number1/21919-5014/
http://dx.doi.org/10.1016/j.laa.2018.02.017
http://dx.doi.org/10.1016/j.laa.2018.02.017
https://doi.org/10.48550/arXiv.quant-ph/0702225
https://doi.org/10.1214/aos/1176344370
https://doi.org/10.1214/aos/1176344370

	An Encryption Method of 8-Qubit States Using Unitary Matrix and Permutation

