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ABSTRACT The paper explores the methods for encrypting and decrypting an 8-qubit states of quantum 

system using unitary and permutation matrix. Our approach utilizes a unitary matrix to create a new 

superpositions of an encrypted 8-qubits states. By applying a permutation matrix, we shuffle the state vectors, 

adding an additional layer of security. The encryption process will be performed on the encrypted state 𝑋 using 

the formula 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃, where 𝑋 is the original state vector, 𝑋 is the unitary matrix, and 𝑃 is the permutation 

matrix. To ensure the total probability remains normalized, we showed that the resulting new 8-qubits state 𝑋′ 
remains normalized. The decryption process is achieved by applying the following operations, 𝑋 = 𝑋′ ⋅ 𝑃𝑇 ⋅
𝑈† retrieving the original state. This paper also is showing that the original quantum state can be accurately 

recovered post-decryption. This highlights the robustness of our approach in maintaining the integrity of 

quantum information. Furthermore, we aim to create 𝑛 block for 𝑛 different 8-qubits state using a different key 

in each block from the initial unitary matrix 𝑈 and permutation 𝑃. In order to implement these methods, we 

need to generate a new unitary matrix for each block. Either by random pick or using iteration. In fact, we 

showed how to create the new unitary matrix using iteration for each block. Here we showed that the new 

generated matrix 𝑈𝑃 is also a unitary matrix so that we can use iteration proses to create a new unitary matrix 

in each 𝑛 block for 𝑛 different 8-qubits state. Here we generate the unitary matrix 𝑈𝑛 from 𝑈𝑛−1 as key in 

block 𝑛. This result in the encryption of each block for each 8-qubits state using the formula 𝑋𝑛
′ = 𝑋𝑛 ⋅ 𝑈𝑛 ⋅ 𝑃 

resulting in a more robust security. The encryption/decryption scheme we referenced can theoretically be 

implemented on modern quantum hardware but verifying operations involving hundreds of qubits would 

demand rigorous calibration and error correction. 
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I.INTRODUCTION  

In 1982, R. P. Feynman [1]] introduced an 

interesting concept that laid the groundwork for 

modern quantum computing. His exploration of 

simulating physical processes with computers 

proposed that classical computers might be 

inadequate for simulating quantum phenomena 

efficiently. The surge in quantum computing has 

revolutionized how we approach data encoding and 

security such as Shor’s Algorithms [2] to break a 

certain security system that previously was 

considered complex. Unlike traditional digital 

frameworks that rely on binary digits (0s and 1s), 

quantum systems leverage qubits. These qubits can 

exist in 0, 1, or any complex superposition of both, 

enabling more intricate and powerful data operations 

[3]. To represent alphabets (like A-Z), quantum 

computers use encoding methods that map each 

letter to a unique binary sequence, similar to ASCII 

encoding in classical systems. However, in quantum 

systems, these binary representations can be placed 

into superposition states, allowing for more complex 

operations [4]. Qubits can represent alphabets by 

encoding them in states that combine multiple 

quantum states simultaneously. The multiple qubits 

also explained in [4] including the 8-qubits system.  

In classical computing however, letters are 

represented using 8-bit binary sequences. 

Conversely, in quantum computing, the concept 

shifts to an 8-qubit system. This system consists of 

8 individual qubits, each capable of existing 

simultaneously in a superposition of the states |0⟩ 
and |1⟩. This superposition allows quantum systems 

to encode information in a more various way than 
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classical bits, enhancing both the complexity and 

potential capabilities of data representation and 

manipulation within quantum system. As the 

number of qubits increases, the dimension of the 

state space increases exponentially. As explained 

before in [3], in general, an 8-qubit system has a 

state space of 

|Ψ⟩ = ∑𝑐𝑖|𝑖⟩

255

𝑖=1

 

 The 𝑖⟩ in here represent one of the 256 

possible basis state combinations of the qubits, and 

𝑐𝑖 are complex coefficients corresponding to the 

probability amplitudes for the basis state 𝑖⟩ and each 

𝑐𝑖  must satisfy the normalization condition: 

∑|𝑐𝑖|
2

255

𝑖=0

  =  1 

For example, a letter could be mapped to a 

specific quantum state that corresponds to a binary 

encoding like '01000001' for 'A'. In this case, the 𝑐𝑖 

of '01000001' will tell us the probability this 8-qubits 

will result in ‘A’ when measured. 

In [5] the classical cryptography and some of 

the coding theory and method were explained. One 

fundamental area of study involves the development 

and enhancement of classical encryption methods to 

fit within quantum system. This paper explores the 

combination of unitary matrix and permutation 

transformations to encode 8-qubit states in matrix 

form, drawing connections between traditional 

binary code theory and quantum system. 

  Binary code theory underpins much of 

classical data encryption, such as in [5] where data 

is represented and manipulated using sequences of 

binary digits also knows as bits. As a simple 

example, shift cipher, or Caesar cipher, is one of the 

simplest and oldest encryption techniques. It works 

by shifting each letter of the plaintext a fixed number 

of places in the alphabet.  

In the realm of binary code theory, our 

encryption method adapts with traditional 

encryption methods while incorporating layered 

security strategies. Previous works, such as the Hill 

cipher [11], which also be explained in [5], is a 

matrix transformation cipher that uses linear algebra 

principles. The plaintext is divided into blocks of 

letters, and each block is represented as a vector. 

These vectors are then multiplied by an invertible 

matrix (key matrix) to produce ciphertext. In the 

binary context, this method can be adapted to handle 

matrices over binary fields, extending its 

applicability to digital data encoding which 

employed matrix multiplication to secure data, 

working on blocks of binary-coded plaintext. While 

effective for classical data, it lacked the state 

transformations present in our approach.   As 

demonstrate before in [6] to enchant the encryption 

to be more robust, permutation codes can be applied 

to enhance data security by rearranging the positions 

of data bits based on a specific permutation pattern, 

creating a layer of obfuscation. Permutation 

matrices are commonly employed in constructing 

permutation codes. They are binary matrices with 

exactly one entry of 1 in each row and column and 

zeros elsewhere, representing a reordering of vector 

components. Here, we want to create a new matrix 

key in each block so that the encryption key for each 

block is different for each other. We can implement 

this method by combining the concept of Hill cipher 

techniques and permutation codes to allows for the 

creation of more robust encryption mechanisms. The 

method involving to represent the code as a matrix 

form as explained in[7]. 

 As in [12] explored permutation ciphers 

applied to binary data, emphasizing reordering to 

conceal information. In contrast, our method 

advances this concept by integrating permutations 

with unitary matrices, creating a secure system for 

8-qubits-encoded information that remains balanced 

and retains properties essential for decoding without 

data loss. 

Additionally, in [12], the combination of 

different ciphers to bolster data protection was 

highlighted, often involving hybrid block and stream 

techniques [16] to thwart cryptanalysis. Our 

framework achieves similar robustness by 

generating unitary matrices iteratively (e.g., 𝑈𝑛 =
 𝑓(𝑈𝑛−1), enhancing each encryption cycle. This 

produces a distinct key for each block of binary data. 

This layered approach ensures decoding can only be 

achieved through the correct application of each key 

in each block, maintaining data security in binary 

code systems. 

In this paper will explain an approach that 

adapts these classical methods for encoding 

information within 8-qubits quantum systems, 

specifically leveraging unitary matrix and 

permutation transformation to represent and 

manipulate qubit states in matrix form. The purpose 

of our research is to explore and enhance the 

application of binary coding theory in encryption 

and decryption mechanisms by employing matrix-

based methodologies within an 8-qubit system. We 

will integrate the unitary matrix 𝑈 as a primary 

component within the Hill cipher framework, 

combined with a permutation matrix 𝑃, forming the 

encryption formula 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃 . Additionally, 

we aim to extend this approach to recursive 

encryption by constructing a sequence of blocks, 

where 𝑈𝑛 serves as the key for block 𝑛. Our research 

will apply this advanced matrix-based structure to an 

8-qubit system, ensuring that decryption is well-

defined, thereby demonstrating the robustness of 

this approach for maintaining data integrity and 

enhancing cryptographic security. 

As in quantum computing, unitary matrices 

[18] play a crucial role in ensuring the correct 

evolution and transformation of quantum states. As 

explained is [8] [10] [17] A unitary matrix 𝑈 is a 
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complex matrix that satisfies the condition 𝑈𝑈† =
𝑈†𝑈 = 𝐼  .  𝑈† is the conjugate transpose of 𝑈 and 𝐼 

is the identity matrix. This property guarantees the 

preservation of the norm of vectors, which is vital 

for maintaining the probabilistic interpretation of 

quantum states during computations. Unitary 

matrices are fundamental in quantum mechanics 

because they describe quantum gates that perform 

reversible transformations on qubits. These 

transformations are essential for the accurate 

manipulation of quantum information without losing 

coherence. For instance, in [3] [4] the Hadamard 

gate, represented by a unitary matrix, creates 

superpositions, a basic requirement in many 

quantum algorithms. The norm-preserving property 

of unitary matrices ensures that the probabilities of 

all possible outcomes in a quantum measurement 

always sum to one, reflecting the conservation of 

quantum information. This reversibility is also 

crucial as it allows any quantum operation to be 

undone, a necessary feature in complex quantum 

computations and algorithms. 

Unitary matrices are indispensable in 

quantum algorithms such as Shor's algorithm for 

factoring integers [2]. These algorithms rely on 

unitary transformations to manipulate qubits and 

perform computations exponentially faster than 

classical algorithms. Additionally, unitary matrices 

are central to quantum error correction codes, as in 

[4] which protect quantum information against 

decoherence and other forms of quantum noise. 

These codes use unitary operations to encode and 

decode quantum information, allowing errors to be 

detected and corrected, thus preserving the integrity 

of the quantum computation. 

 

The purpose of our research : 

The purpose of our research is to delve 

deeply into and advance the application of binary 

coding theory in encryption and decryption 

processes by utilizing matrix-based methodologies 

within an 8-qubit quantum computing system. This 

exploration is motivated by the need to develop 

more robust, secure, and efficient cryptographic 

methods that can leverage the unique properties of 

quantum mechanics. 

We propose the integration of the unitary 

matrix 𝑈 as a fundamental component within the 

Hill cipher framework. The Hill cipher, a classical 

encryption method, typically involves matrix 

multiplication to transform blocks of plaintext into 

ciphertext. By using the unitary matrix, which in 

quantum computing refers to unitary matrices as a 

transformation of multiple-qubits states, we adapt 

this classical method to the quantum domain. 

Unitary matrices are essential in quantum computing 

because they preserve the norm of the quantum state, 

ensuring that the quantum system remains in a valid 

state throughout the computation process. 

To further enhance the security of our 

encryption method, we combine the unitary matrix 

𝑈 with a permutation matrix 𝑃. The permutation 

matrix 𝑃 reorders the elements of the vector it 

multiplies, adding an additional layer of complexity 

and security to the encryption process as 

demonstrate in [17]. We will show that the resulting 

encryption model can be expressed as 𝑋′ = 𝑋 ⋅ 𝑈 ⋅
𝑃𝑋′ =  𝑋 . 𝑈 . 𝑃, where 𝑋 is the initial quantum 

state, and 𝑋′ is the encrypted state. 

One of the key innovations of our research is 

the introduction of a recursive structure for the 

encryption process. This involves creating a 

sequence of encryption blocks, with each block say 

block 𝑛 having its own unique key matrix 𝑈𝑛. This 

iterative approach enhances security by ensuring 

that each block of data is encrypted with a different 

transformation, making it significantly more 

difficult for an adversary to decipher the entire 

dataset if they manage to decrypt one block. We will 

show how to do this recursive so that that the 

encryption for block 𝑛 can be defined as 𝑋𝑛
′ = 𝑋𝑛 ⋅

𝑈𝑛 ⋅ 𝑃, where n = 1, 2, 3,…. For instance, encoding 

an 8-bit message 𝑋 into binary and encrypting it 

involves transforming it with 𝑈 and scrambling it 

with 𝑃. Decryption shows that applying 𝑃𝑇followed 

by 𝑈† retrieves 𝑋, demonstrating consistency with 

binary code theory principles while achieving 

enhanced data protection. 

Our research also focuses on ensuring that 

the decryption process is well-defined and reliable. 

The decryption must correctly reverse the 

transformations applied during encryption to 

retrieve the original data without loss of information. 

This involves applying the inverse of the 

permutation matrix 𝑃, that in [14] can be treated as 

𝑃𝑇 , and the conjugate transpose of the unitary matrix 

𝑈, denoted as 𝑈†  . Thus, the decryption process can 

be described as 𝑋 = 𝑋′ ⋅ 𝑃𝑡 ⋅ 𝑈†. 

Given the properties of the 8-qubit system, 

we illustrate that a Hadamard matrix [9] can be 

effectively used as the unitary matrix 𝑈. The 

Hadamard matrix is widely used in quantum 

computing for creating superpositions, which are a 

foundational aspect of quantum computation. By 

integrating the Hadamard matrix into our encryption 

sequence, we can leverage its ability to transform 

quantum states in a way that maximizes their 

informational entropy, further enhancing the 

security of the encrypted data. 

Through practical examples, we demonstrate 

how our method integrates the Hadamard matrix for 

the encryption sequence. We provide detailed steps 

and implementations in Python to verify and explain 

the outcomes, ensuring that the theoretical 

underpinnings of our approach are grounded in 

practical, reproducible results. 

Our paper showed the robustness of this 

combined method for maintaining data integrity and 

enhancing cryptographic security. By leveraging the 
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principles of binary coding theory and quantum 

mechanics, we aspire to create a sophisticated 

encryption framework that is resilient against 

contemporary cryptographic attacks and poised to 

withstand future developments in quantum 

computing 

Then as described above, the main purpose of 

our research is to introduce an advance the 

application of binary coding theory in encryption 

and decryption processes to an 8-qubits system of 

quantum computing by we combine the unitary 

matrix 𝑈 with a permutation matrix 𝑃 and we will 

show that the resulting encryption model can be 

expressed as 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃𝑋′ =  𝑋 . 𝑈 . 𝑃, where 𝑋 

is the initial quantum state, and 𝑋′ is the encrypted 

state. Furthermore, a recursive structure for the 

encryption process can be made. We will show how 

to do this recursive so that that the encryption for 

block 𝑛 can be defined as 𝑋𝑛
′ = 𝑋𝑛 ⋅ 𝑈𝑛 ⋅ 𝑃, where 

𝑛 =  1, 2, 3, ….. This involves creating a sequence of 

encryption blocks, with each block say block 𝑛 

having its own unique key matrix 𝑈𝑛. This iterative 

approach enhances security by ensuring that each 

block of data is encrypted with a different 

transformation, making it significantly more 

difficult for an adversary to decipher the entire 

dataset if they manage to decrypt one block. 

Furthermore, we will create an example of this 

unitary matrix using the Hadamard matrix, as 

described in [20], and implemented this in Python as 

an example. The resulting program encrypts and 

decrypts using the Hadamard matrix as the unitary 

matrix and random permutations as the keys. This 

practical implementation demonstrates the 

feasibility and effectiveness of our proposed 

method, providing a robust solution for secure 

quantum state encryption. 

 

 

 

 

II.METHOD 

In classical computing, each bit in a binary 

sequence corresponds directly to a single qubit when 

represented in quantum form [5]. Each bit of the 

classical binary representation can be represented by 

a qubit. For the letter 'A', which is 01000001, we 

would need an 8-qubit register where each qubit 

represents one bit of the binary string. If a quantum 

algorithm required processing multiple letters or 

data, qubits could be set in a superposition state such 

as |ψ⟩ = α|01000001⟩ + β|01000010⟩ +
γ|01000011⟩.  With the asumtion that α2  + β2  +
 γ2  =  1 [4]. 

To fully utilize quantum operations and 

encryption methods, it is essential to represent the 

state of an 8-qubit system in matrix form. An 8-qubit 

system can be described as a state vector in a 256-

dimensional complex vector space, given that there 

are 28 =  256 possible combinations of binary 

states for the qubits [4]. This representation allows 

for advanced operations, such as linear 

transformations as in [8], which are foundational for 

quantum computation and encryption algorithms.  

Each basis state 𝑖⟩ in an 8-qubit system corresponds 

to a unique combination of eight bits, where 𝑖 ranges 

from 0 to 255. To represent the state |Ψ⟩ in matrix 

form, we construct a column vector of size 256 ×  1. 
Each element of this vector corresponds to one of the 

basis states and its associated probability amplitude. 

In general, the state vector could be written as: 

 |Ψ⟩ =

[
 
 
 
 

𝑐0

𝑐1

⋮
𝑐254

𝑐255]
 
 
 
 

. 

Our result : 

In this paper we will show how do an 

encryption with a unitary transformation to a 

quantum state to securely encode information. To 

achieve this, we need to define a 256 × 256 unitary 

matrix 𝑈. A unitary matrix 𝑈 is a complex matrix 

that satisfies the condition 𝑈𝑈† = 𝑈†𝑈 = 𝐼  .  𝑈† is 

the conjugate transpose of 𝑈 and 𝐼 is the identity 

matrix [8]. This is obvious from the definition that 

𝑈−1 = 𝑈† . Using the unitary matrix 𝑈, we will 

perform the encryption while preserving the 

normalization condition of the quantum state. This 

ensures that the total probability of all possible states 

remains 1.  

In the next step, we will use a permutation 

matrix 𝑃.  A permutation matrix 𝑃 is a special type 

of square matrix used in various computational and 

mathematical applications to rearrange or permute 

the elements of a vector or the rows and columns of 

another matrix. Permutation matrices are binary 

matrices that have exactly one entry of 1 in each row 

and each column, with all other entries being 0. This 

structure ensures that when a permutation matrix is 

multiplied with another matrix or vector, it reorders 

the elements according to a specific permutation. 

Hence, the inverse of a permutation matrix 𝑃 is the 

inverse of the permutation, that is a transpose of 𝑃 

denoted by 𝑃⊤.  

This The primary objective of this study was 

to implement and evaluate the encryption and 

decryption of an 8-qubit system using unitary and 

permutation matrices. We will the show that the 

matrix 𝑈𝑃 remained unitary, allowing the creation 

of 𝑛 blocks for 𝑛 different 8-qubit states. The use of 

unique unitary matrices for each block prevented 

potential security vulnerabilities associated with 

using a single key for multiple blocks. The use of the 

a unitary matrix, combined with permutation 

matrices, provided a robust framework for secure 

quantum state encryption. Here we will analyze and 

show that the unitary matrix combined with 

permutation matrices provides a robust solution for 

quantum encryption of state vectors by proofing that 

the encryption matrix and the decryption matrix that 
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was design as the key encrypted the original 8-qubits 

state X to new 8-qubits state X’ and decrypted these 

8-qubits state X’ back to the original 8-qubits state 

X, adding an additional layer of security. The 

encryption is well defined if the resulting X’ is 

indeed a 8-qubits state that is a state that has 1 as the 

cumulative total value of its constant in every 256 

representations.  We will show next that the 

combination of these matrices ensured that the state 

remained well-defined and normalized throughout 

the process. The iterative generation of new unitary 

matrices 𝑈𝑛 from 𝑈𝑛−1 for each block of 8-qubit 

states added an additional layer of security. This 

iterative method ensured that each block had a 

unique key, enhancing the overall security of the 

encryption process. 

The decryption process, utilizing the inverse 

operations of the permutation and unitary matrices, 

demonstrated that the original quantum state could 

be accurately recovered. This result validates the 

encryption method, as the integrity of the quantum 

information was preserved. 

To perform the encryption, we will use the 

unitary matrix 𝑈 and the permutation matrix 𝑃. The 

encryption process can be described by the 

following operation 𝑋′ = 𝑋𝑈𝑃. In order for this 

operation to be well defined we need to ensure that 

the matrix 𝑈𝑃 is also a unitary matrix so that we can 

perform the encryption while preserving the 

normalization condition of the quantum state. To 

proof this we need to proof that the matrix 𝑈𝑃 

satisfies (𝑈𝑃)(𝑈𝑃)† = 𝐼. Since 𝑃 is a permutation 

matrix and the inverse of 𝑃 is its transpose then we 

have that 𝑃† = 𝑃⊤. So that (𝑈𝑃)(𝑈𝑃)† =
𝑈. 𝑃. 𝑃†𝑈† = 𝐼. This complete our proof and 

ensuring that the matrix 𝑈𝑃 is indeed a unitary 

matrix.  

Next, we would like to encrypt any state of 

an 8-qubit system using the matrix 𝑈𝑃, where 𝑈 is 

an arbitrary unitary matrix and 𝑃 is an arbitrary 

permutation matrix. Suppose we have an 8-qubit 

system in a specific quantum state, and the matrix 

representation of this state is denoted by 𝑋. Let 𝑈 be 

an arbitrary unitary matrix and 𝑃 be an arbitrary 

permutation matrix. To encode matrix 𝑋, we will 

perform the following computation, resulting in the 

encrypted state 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃. This operation 

ensures that the encoded state 𝑋′ is a valid 

representation of an 8-qubit state. We have 

previously demonstrated that this matrix 𝑋′ is indeed 

well-defined and accurately represents the state of 

the 8-qubit system. In other hand we can also 

decrypted 𝑋’ to 𝑋 by using the formula 𝑋 = 𝑋′ ⋅ 𝑃𝑇 ⋅
𝑈†. 

Furthermore, the previous proof allows us to 

create a new unitary matrix 𝑈𝑃 using unitary matrix 

𝑈 and permutation matrix 𝑃. Reapplying this 

method, we can also create a unitary matrix 𝑈𝑃𝑃. 

Here, for each block say for example, block 𝑛, we 

have unitary matrix 𝑈𝑃𝑃 … 𝑃 with the number of 

matrices 𝑃 equal to 𝑛. This allows as to make an 

iteration with the formula as follow, 𝑈𝑛 = 𝑈𝑛−1. In 

summarize the encryption of block 𝑛 of the sequence 

of 8-qubits state is 𝑋𝑛
′ = 𝑋𝑛 ⋅ 𝑈𝑛 ⋅ 𝑃 and the 

decryption of block 𝑛 of the sequence of 8-qubits 

state is 𝑋𝑛 = 𝑋𝑛
′ ⋅ 𝑃𝑇 ⋅ 𝑈𝑛

†. 

successfully implemented and evaluated an 

encryption and decryption method for an 8-qubit 

system using unitary and permutation matrices. The 

integration of these matrices ensured that the 

encryption process remained robust, with the matrix 

𝑈𝑃 retaining its unitary properties, allowing for the 

creation of multiple encryption blocks. By using 

unique unitary matrices for each block, the approach 

effectively mitigated security risks associated with 

reusing a single key. This combination of unitary 

and permutation matrices provided a well-defined 

and normalized quantum state throughout the 

encryption process. The iterative generation of new 

unitary matrices 𝑈𝑛 for each block added an 

additional layer of security, ensuring each block had 

a distinct key. The decryption process, employing 

the inverse operations of the permutation and unitary 

matrices, accurately recovered the original quantum 

state, validating the encryption method and 

preserving the integrity of the quantum information. 

This demonstrates the robustness and effectiveness 

of the proposed quantum encryption framework. 

Compariosn to the previus result : 

Please note that the encryption/decryption scheme 

we referenced can theoretically be implemented on 

modern quantum hardware. However, verifying 

operations involving hundreds of qubits would 

require rigorous calibration and error correction, 

which is beyond the scope of our research. Our focus 

is on the theoretical foundation, particularly in 

coding theory, and we adapt classical methods for 

quantum computing. Specifically, we work with an 

8-quantum-state approach. The comparison lies in 

our encryption method, which is more secure 

because it employs a double-layer encryption 

scheme. This method is indeed more robust than 

single-layer encryption. 

Implementation on Python : 

To summarized this write the algorithm as 

follows. 

Algorithms 1 showed how this method works 

using a random unitary matrix. 
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Algorithms 2 showed how this method works 

using the iteration process as defined above so that 

for each block we generate a new 𝑈𝑛 from the 

previous 𝑈𝑛−1 resulting in a new key for the block 

𝑛. The recursive proses are done by the matrix 

product of unitary 𝑈𝑛−1 and permutation matrix 𝑃 

resulting in a more secure encryption proses than 

algorithm 1.   

 
To demonstrate how it works we will now try 

to write an example by writing a python program for 

this method. First, for an 8-qubits we represent this 

8-qubits in matrix form 𝑋. Then we need an unitary 

matrix 𝑃. We will use a Hadamard matrix for this 

unitary matrix 𝑃 as shown in [9] .  The Hadamard 

matrix 𝑋 for a single qubit is defined as : 

𝐻 =
1

√2
(
1 1
1 −1

) 

Creating a Hadamard matrix for 28 (which is 

256) means constructing a 256 × 256 matrix. The 

Hadamard matrix can be recursively generated using 

the following formula: 

𝐻2𝑛 =
1

√2
(
𝐻2𝑛−1 𝐻2𝑛−1

𝐻2𝑛−1 −𝐻2𝑛−1
) 

For 𝑛 = 8 the resulting Hadamard matrix 

𝐻256 is a matrix of size 256 × 256. In ython you 

can use the Hadamard library to create a Hadamard 

matrix. 

The final python project will be created as 

follows  

 

 
And the Python program to run the iteration 

as defined above are as follows  



Rizky Alfanio Atmoko: An Encryption Method of 8-Qubit States Using Unitary Matrix and 
Permutation 

 

80 
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more 

information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
 

The Python code leverages the libraries 

numpy and scipy to perform complex matrix 

operations essential for quantum state manipulation. 

The numpy library is utilized for its powerful 

numerical operations, enabling efficient handling of 

matrices and vectors, while scipy's hadamard 

function provides the Hadamard matrix, known for 

its orthogonal properties crucial in quantum 

computations. 

The function create_permutation_matrix(n) 

generates an 𝑛 × 𝑛 permutation matrix. This matrix 

is constructed by shuffling the rows such that each 

row and column contains exactly one "1", ensuring 

that the matrix effectively reorders elements during 

multiplication. The function begins by initializing an 

𝑛 × 𝑛 zero matrix 𝑃. It then creates a random 

permutation of integers from 0 to 𝑛 − 1 and 

populates the matrix 𝑃 so that each row places a "1" 

in a column specified by the permutation. 

The create_hadamard_matrix(n) function 

returns an 𝑛 × 𝑛 Hadamard matrix, normalized by 
1

√𝑛
. The normalization is essential in quantum 

computations to maintain the normalization of 

quantum states. The function utilizes scipy's 

hadamard(n) to generate the Hadamard matrix and 

then divides it by √𝑛 to normalize it. 

The create_unitary_matrices(num_qubits) 

function aims to generate a unitary matrix by 

iteratively multiplying a Hadamard matrix by 

permutation matrices, simulating a series of 

quantum operations. The function calculates 𝑛 =
 2𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 to accommodate the 8-qubit system, 

resulting in a 256-dimensional state vector. It 

initializes the matrix 𝑈 with the normalized 

Hadamard matrix and iteratively multiplies 𝑈 by a 

permutation matrix 𝑛𝑢𝑚𝑞𝑢𝑏𝑖𝑡𝑠 − 1 ×, ensuring the 

transformations are complex and effective. The 

function returns the final unitary matrix and the last 

permutation matrix used. 

The encrypt(state, unitary, permutation) 

function encrypts the state vector by sequentially 

multiplying it with the unitary and permutation 

matrices, following the formula 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃. The 

function returns the encrypted state vector. 

Conversely, the decrypt(encrypted_state, unitary, 

permutation) function decrypts the state by applying 

the inverse of the unitary and permutation matrices. 

The decryption process uses the formula 𝑋 = 𝑋′ ⋅
𝑃𝑡 ⋅ 𝑈𝑡 = 𝑋′ ⋅ 𝑃−1 ⋅ 𝑈−1, where 𝑈−1 is the transpose 

conjugate of 𝑈 and 𝑃−1 is both the transpose and 

inverse of 𝑃. This ensures the correct retrieval of the 

original state vector, maintaining the integrity of the 

quantum information. 

In an example run, the code handles an 8-

qubit system where 𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 = 8 results in 𝑛 =
256, creating a 256-dimensional state vector. A 

complex random vector is generated and normalized 

as the original state. During encryption, the state 

vector is transformed using the generated unitary 

and permutation matrices. The decryption process 

then reverses these transformations, with the 

decrypted state being compared to the original using 

the np.allclose() function. This comparison confirms 

that the decrypted state is approximately equal to the 

original, validating the success of the encryption-

decryption cycle. 

The original output of this program are 

complex matrices 256 × 256 both in encrypted state 

and in decrypted state in which we needs a lot of 

space to visualize but we simplified the output of this 

program for a few firs and lastt term and displayed 

it as follows :  

Encrypted State: 

[2.34038526e-02+2.17509742e-02j -6.03981802e-

03+4.56055155e-02j 1.69003759e-

02+8.12635722e-03j ... ... -1.10377420e-

02+3.91224586e-02j 4.35575304e-

02+1.04051998e-03j] 

Decrypted State: [0.05437421+0.07096808j 

0.04757264+0.07325192j .03779137+0.05093413j 

0.06995303+0.0141159j ... ... … 

0.06696016+0.01274167j 

0.06921159+0.04156791j 

0.01065823+0.01309069j] 

Decryption successful, the original 

state is recovered. 

 

 

III.RESULT AND DISCUSSION 

In classical cryptography, as described in 

references [5], [6], and [7], encryption and 

decryption methods are employed to secure binary 
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data using various ciphers. The Hill Cipher and 

Permutation Method are prime examples of such 

techniques. However, these methods are considered 

relatively weak when used alone in modern contexts. 

To address this, it is essential to develop new 

methods or enhance existing ones by combining 

them to create stronger encryption and decryption 

systems. For instance, studies in [16] and [17] 

introduced novel encryption and decryption 

methods involving both block and stream ciphers, as 

explained in [5], to ensure robust data security. 

The primary objective of this study was to 

implement and evaluate an encryption and 

decryption method for an 8-qubit system from 

quantum computing in which was introduced by 

Feynman's introduction of the quantum system in 

1982 [1], similar to the approaches in [16] and [17]. 

We utilized unitary and permutation matrices for 

encryption, drawing inspiration from [18] to 

preserve the unitary of the 8-qubit quantum state, 

ensuring that the transformation results remained 

valid quantum states [4]. Our results indicate that the 

matrix 𝑈𝑃, where 𝑈 is the unitary matrix and 𝑃 is 

the permutation matrix, remained unitary. This 

facilitated the creation of 𝑛 blocks for 𝑛 different 8-

qubit states. This finding is significant because it 

confirms that the unitary nature of the encryption 

matrix is preserved, an essential requirement for 

quantum computing operations. 

By using unique unitary matrices for each 

block, we effectively mitigated potential security 

vulnerabilities associated with employing a single 

key for multiple blocks. This approach aligns with 

contemporary cryptographic practices that 

emphasize key uniqueness to prevent cross-block 

security breaches, as outlined in [5]. The 

combination of unitary and permutation matrices 

established a robust framework for quantum state 

encryption. This dual-matrix method ensures that 

state vectors are encrypted securely, adding an extra 

layer of protection that is crucial for maintaining 

data integrity in quantum communication systems. 

Our methodology confirmed that the 

combined use of unitary and permutation matrices 

ensures the encrypted state remains well-defined and 

normalized throughout the process. This is critical 

for quantum systems, as maintaining normalization 

prevents loss or distortion of quantum information. 

The iterative generation of new unitary matrices 𝑈𝑛 

from 𝑈𝑛−1  for each block of 8-qubit states added an 

additional layer of security. Each block having a 

unique key significantly enhances the overall 

security of the encryption process, a feature that is 

vital for scalable quantum encryption systems. The 

key for each of this block can be calculate using the 

formula 𝑈1 = 𝑈 and 𝑈𝑛 = 𝑈𝑛−1𝑃. Consequently, 

the encryption process is achieved by applying the 

following operations 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃 and the 

decryption process is achieved by applying the 

following operations 𝑋 = 𝑋′ ⋅ 𝑃𝑇 ⋅ 𝑈†. Where 𝑋 is 

the original state vector, 𝑋 is the unitary matrix, and 

𝑃 is the permutation matrix. 

Furthermore, we successfully created an 

example of this unitary matrix using the Hadamard 

matrix, as described in [21], and implemented this in 

Python as an example. The resulting program 

encrypts and decrypts using the Hadamard matrix as 

the unitary matrix and random permutations as the 

keys. This practical implementation demonstrates 

the feasibility and effectiveness of our proposed 

method, providing a robust solution for secure 

quantum state encryption. 

These findings highlight the importance of 

combining unitary and permutation matrices to 

develop secure quantum encryption methods in 8-

qubits system, ensuring that quantum states remain 

well-defined and normalized throughout the process. 

This approach not only enhances security but also 

provides a scalable solution for larger quantum 

systems, paving the way for further advancements in 

quantum cryptography and secure communication 

protocols. 

 

IV.CONCLUSION  

In conclusion, as in our main objective, this 

paper successfully implemented and evaluated an 

encryption and decryption method for an 8-qubit 

system introduce an advance the application of 

binary coding theory in encryption and decryption 

processes to an 8-qubits system of quantum 

computing by using unitary and permutation 

matrices. The integration of these matrices ensured 

that the encryption process remained robust, with the 

matrix 𝑈𝑃 retaining its unitary properties, allowing 

for the creation of multiple encryption blocks using 

the formula 𝑈𝑛 = 𝑈𝑛−1 and 𝑈1 = 𝑈 . we showed 

that the resulting encryption model can be expressed 

as 𝑋′ = 𝑋 ⋅ 𝑈 ⋅ 𝑃𝑋′ =  𝑋 . 𝑈 . 𝑃, where 𝑋 is the 

initial quantum state, and 𝑋′ is the encrypted state. 

The iterative generation of new unitary matrices 𝑈𝑛  

for each block added an additional layer of security, 

ensuring each block had a distinct key.. We also 

successfully created an example of the unitary 

matrix using the Hadamard matrix. The resulting 

program encrypts and decrypts using the Hadamard 

matrix and random permutations as the keys. This 

practical implementation demonstrates the existence 

of our proposed method. 
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