ACTIVE PASSIVE THERMOELECTRIC SYSTEM HELMET FOR PERSONAL COMFORT

Authors

  • azamataufiq budiprasojo Politeknik Negeri Jember
  • Risse Entikaria Rachmanita

Abstract

This study aims to make motorbike helmet using thermoelectric technology by utilizing a Peltier effect. The main system component consists of a double layer heatsink, fan, copper plate, and thermoelectric module. 12 DC Voltage applied to module, and temperature differences rise created. Heat in hot side rejected to environment by heatsink and fan. A copper mounted to cold side to sprayed out the cool sensation to a whole helmet. This study was conducted prototype to analyse the performance of cooling. The results showed a fair enough result that indicated prototype of a cooling system based on thermoelectricity for a motorcyclist helmet can reduce the inside helmet temperature by 18%. The results showed a fair enough result that indicated the temperature inside helmet was reduced from 33°C to 27°C in approximately 10 minutes.  The highest  temperature on  hot  side  is  50°C  and  the  lowest temperate on cold side is 20°C. Q total in helmet to absorb 53 watts; the thermoelectric cold side heat absorption 42.5 watts, the thermoelectric hot side heat emissive 93.5 watts; the heatsink heat rejected 70 watts; the fan specification is 12V DC 0.9A and it can rejected heat by 30 watts.

References

. Cai, Yang. 2016. “Performance Analysis and Assesment of Thermoelectric Micro Cooler For Electronic Deviceâ€. Science Direct. Energy Convension and Management 124(2016) 203-211

. Budiprasojo, Azamataufiq; Irawan, Andik. Engine Combustion Efficiency and Performance of Exhaust Pipe Fuel Preheating System. Rekayasa Mesin, 2018, 9.1: 1-7.

. Dimri, Neha. 2018. “Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiencyâ€. Science Direct. Solar Energy. 166(2016) 159-170

. H.J. Goldsmid. 2012. Materials, Preparation, and Characterization in Thermoelectrics. Taylor and Francis Group

. https://www.engineeringtoolbox.com/cooling-heating-equations-d_747.html

. Muntini, Melania S, Risse E, et al. 2017. Comparison of Electrical Power for Thermoelectric Oxide Module. Journal of Materials Science and Applied Energy 6(3) (2017) 238 – 242

. Latif, Melda; Hayati, Nuri; Dinata, Uyung Gatot S. Potensi Energi Listrik Pada Gas Buang Sepeda Motor. Jurnal Rekayasa Elektrika, 2015, 11.5: 163-168.

. Seetawan, et al. 2014. Thermoelectric Energy Conversion of p + Ca3Co4O9/n +CaMnO3 Module. Energy Procedia 61 ( 2014 ) 1067 – 1070

. Wang, P. 2017. “Thermoelectric Fields and Associated Thermal Stresses for An Inclined Elliptiic Hole in thermoelectric Materialâ€. Science Direct. Journal of Engineering Science 119 (2017) 93108

. Gontor A, dkk., 2015. Aplikasi Termoelektrik Generator sebagai Pembangkit Listrik Dengan Sisi Dingin Menggunakan Air Bertemperatur 10 ºC. Jurnal Sains dan Teknologi 14 (2): 45-50

. Sri P., dkk., 2017. Aplikasi Efek Peltier Sebagai Kotak Penghangat Dan Pendingin Berbasis Mikroprosessor Arduino Uno. Jurnal Rekayasa dan Teknologi Elektro 11 (3): 99-104

Published

2019-12-27