Penerapan Particle Swarm Optimization Untuk Meningkatkan Kinerja Algoritma K-Nearest Neighbor Dalam Klasifikasi Penyakit Diabetes

Authors

  • Dyah Susilowati Universitas Bumigora Mataram
  • Sutrisno Universitas Bumigora Mataram
  • Muhammad Yunus Politeknik Negeri Jember

DOI:

https://doi.org/10.25047/j-remi.v4i3.3980

Keywords:

Classification of Diabetes, Particle Swarm Optimization, K-Nearest Neighbor

Abstract

The study aims to apply the KNN algorithm to classify diabetes by combining the PSO algorithm as a selection so as to obtain the best accuracy from the KNN algorithm in classifying, so that it can be applied to diagnose diabetes. This research consists of several stages of research including dataset collection, data pre-processing, data sharing, finding the optimal k-value to the classification process and performance or accuracy testing. From this research, the accuracy of the KNN algorithm before feature selection using PSO is 75% at k-optimal 19 and after feature selection using PSO is obtained an increase in accuracy to 77.213% at the same k value with features that affect the pima dataset, namely Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function, and Age. Thus the use of KNN with PSO feature selection can be used to identify diabetes because it has a much better level of accuracy.

References

D. K. Choubey, P. Kumar, S. Tripathi, and S. Kumar, “Performance evaluation of classification methods with PCA and PSO for diabetes,” Netw. Model. Anal. Heal. Informatics Bioinforma., vol. 9, no. 1, pp. 1–30, Dec. 2020, doi: 10.1007/S13721-019-0210-8/METRICS.

A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, Jul. 2020, doi: 10.33096/IJODAS.V1I2.11.

Kementerian Kesehatan RI., “Infodatin tetap produktif, cegah, dan atasi Diabetes Melitus 2020,” Pusat Data dan Informasi Kementerian Kesehatan RI. pp. 1–10, 2020.

H. Hairani, G. S. Nugraha, M. N. Abdillah, and M. Innuddin, “Komparasi Akurasi Metode Correlated Naive Bayes Classifier dan Naive Bayes Classifier untuk Diagnosis Penyakit Diabetes,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 3, no. 1, pp. 6–11, Sep. 2018, doi: 10.30743/INFOTEKJAR.V3I1.558.

D. Y. Shailendra, “Seleksi Fitur Menggunakan Metode Hybrid Particle Swarm Optimization dengan Operasi Local Seacrh (HPSO-LS) untuk Klasifikasi Data,” 2017.

M. Yunus, N. Kadek, and A. Pratiwi, “Prediksi Status Gizi Balita Dengan Algoritma K-Nearest Neighbor (KNN) di Puskemas Cakranegara,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 4, pp. 221–231, Feb. 2023, doi: 10.35746/JTIM.V4I4.328.

K. Saxena, Z. Khan, S. Singh, M.-T. Research, and S. 1&3, “Diagnosis of Diabetes Mellitus using K Nearest Neighbor Algorithm,” Int. J. Comput. Sci. Trends Technol., vol. 2, Accessed: Jun. 30, 2023. [Online]. Available: www.ijcstjournal.org

I. Lina, P. Politeknik, and B. Jepara, “Implementasi Algoritma Particle Swarm Optimization (PSO) dan K-Nearest Neighbor (K-NN) Dalam Memprediksi Keberhasilan Anak SMK Mendapatkan Kerja,” Technol. J. Ilm., vol. 13, no. 4, pp. 339–350, Oct. 2022, Accessed: Jun. 30, 2023. [Online]. Available: https://ojs.uniska-bjm.ac.id/index.php/JIT/article/view/8167

O. Findik, I. Babaoǧlu, and E. Ülker, “A color image watermarking scheme based on hybrid classification method: Particle swarm optimization and k-nearest neighbor algorithm,” Opt. Commun., vol. 283, no. 24, pp. 4916–4922, Dec. 2010, doi: 10.1016/J.OPTCOM.2010.07.020.

U. M. LEARNING, “Pima Indians Diabetes Database | Kaggle.” https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database (accessed Jun. 30, 2023).

S. Ulya, M. Arief Soeleman, F. Budiman, and M. Teknik Informatika, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa,” Techno.Com, vol. 20, no. 1, pp. 83–96, Feb. 2021, doi: 10.33633/tc.v20i1.4215.

Y. Xue, T. Tang, W. Pang, and A. X. Liu, “Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers,” Appl. Soft Comput., vol. 88, p. 106031, Mar. 2020, doi: 10.1016/J.ASOC.2019.106031.

Downloads

Published

2023-06-30

How to Cite

Susilowati, D., Sutrisno, S., & Yunus, M. (2023). Penerapan Particle Swarm Optimization Untuk Meningkatkan Kinerja Algoritma K-Nearest Neighbor Dalam Klasifikasi Penyakit Diabetes. J-REMI : Jurnal Rekam Medik Dan Informasi Kesehatan, 4(3), 176–184. https://doi.org/10.25047/j-remi.v4i3.3980

Issue

Section

Artikel

Similar Articles

You may also start an advanced similarity search for this article.