Effect of black soldier fly larva meal on energy, protein digestibility, performance, and carcass quality in local crossbred chickens

Authors

  • Dyah Lestari Yulianti Universitas Islam Malang
  • Osfar Sjofjan
  • Angga Firmansyah
  • Abdurahhman Ahzami
  • Baiq Widya Rahmatul Aini

DOI:

https://doi.org/10.25047/jipt.v8i1.4700

Keywords:

Black soldier larva, Carcass, Local crossbreed chicken, Metabolic energy

Abstract

This research aims to determine the effects of Black Soldier Larva (BSF) meal on metabolic energy, protein digestibility, production performance, characteristics, and carcass quality of local crossbred chickens. The material for this research was 100 local crossbred chickens (the result of crossing male Kampung chickens with female laying hens) aged 30-35 days. The average initial body weight of chickens was 340.6 grams with a coefficient of variation of 5.24%. The research feed is a commercial feed for the finishing period. The experiment involved four treatment groups, where BSF larva meal was incorporated into the feed at levels of 0% (P0), 5% (P1), 10% (P2), and 15% (P3). The experimental design was a completely randomized design with four treatments and five replications. The research variables were metabolic energy, protein digestibility, feed consumption, body weight gain, feed conversion ratio, carcass percentage, and carcass quality. The data were subjected to an analysis of variance, and the differences between groups were determined by Duncan’s test. Based on statistical analysis, BSF Larva meal influences breast muscle weight, meat protein content, apparent metabolic digestibility, and N retention. It can be concluded that BSF larva meal can replace 10% of complete feed without reducing production performance.

Downloads

Download data is not yet available.

References

Baracho, M. S., Nääs, I. D. A., Lima, N. D. S., Cordeiro, A. F. S., & Moura, D. J. (2019). Factors affecting broiler production: A meta-analysis. Brazilian Journal of Poultry Science, 21, 1–7. Retrieved from https://doi.org/10.1590/1806-9061-2019-1052

Barszcz, M., Tuśnio, A., & Taciak, M. (2024). Poultry nutrition. Physical Sciences Reviews, 9(2), 611–650. https://doi.org/10.1515/psr-2021-0122

Bell, D. D., & Weaver, W. D. (2002). Commercial chicken meat and egg production: 5th edition. Journal of Applied Poultry Research, 11(2), 224–225. https://doi.org/10.1093/japr/11.2.224

Beski, S. S. M., Swick, R. A., & Iji, P. A. (2015). Specialized protein products in broiler chicken nutrition: A review. Animal Nutrition, 1(2), 47–53. https://doi.org/10.1016/j.aninu.2015.05.005

Damara, D., Berata, I. K., Ardana, I. B. K., Setiasih, N. L. E., & Sulabda, I. N. (2021). Hubungan berat badan dengan berat hati serta gambaran histologi hati broiler yang diberikan tepung maggot. Indonesia Medicus Veterinus, 10(5), 714–724. https://doi.org/10.19087/imv.2021.10.5.714

Danisman, R., & Gous, R. (2011). Effect of dietary protein on the allometric relationships between some carcass portions and body protein in three broiler strains. South African Journal of Animal Science, 41(3), 194–208. https://doi.org/10.4314/sajas.v41i3.2

Dörper, A., Veldkamp, T., & Dicke, M. (2021). Use of black soldier fly and house fly in feed to promote sustainable poultry production. Journal of Insects as Food and Feed, 7(5), 761–780. https://doi.org/10.3920/JIFF2020.0064

Heuel, M., Sandrock, C., Leiber, F., Mathys, A., Gold, M., Zurbrügg, C., … Terranova, M. (2021). Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poultry Science, 100(4), 101034. https://doi.org/10.1016/j.psj.2021.101034

Islam, M. S., Haque, M. M., & Hossain, M. S. (2016). Laboratory protocols of wet analysis for poultry feed and raw materials. Journal of Poultry Science and Technology, 4, 28–38. Retrieved from www.jakraya.com/journal/jpst

Kim, B., Kim, H. R., Baek, Y.-C., Ryu, C. H., Ji, S. Y., Jeong, J. Y., … Park, S. H. (2022). Evaluation of microwave-dried black soldier fly (Hermetia illucens) larvae meal as a dietary protein source in broiler chicken diets. Journal of Insects as Food and Feed, 8(9), 977–987. https://doi.org/10.3920/JIFF2021.0113

Kim, J. H. (2014). Energy metabolism and protein utilization in chicken-A review. Korean Journal of Poultry Science, 41(4), 313–322. https://doi.org/10.5536/KJPS.2014.41.4.313

Kleyn, R. (2013). Chicken nutrition: a guide for nutritionists and poultry professionals. Packington: Context.

Kovaleva, O. V., Demin, E. A., Kostomakhin, N. M., & Punegova, V. V. (2023). Nitrogen balance harmonization for sustainable intensifi cation of poultry production. Glavnyj Zootehnik (Head of Animal Breeding), (1), 3–13. https://doi.org/10.33920/sel-03-2301-01

Latshaw, J. D., & Moritz, J. S. (2009). The partitioning of metabolizable energy by broiler chickens. Poultry Science, 88(1), 98–105. https://doi.org/10.3382/ps.2008-00161

Mait, Y. S., Rompis, J. E. G., Tulung, B., Laihad, J., & Londok, J. J. M. R. (2019). Pengaruh pembatasan pakan dan sumber serat kasar berbeda terhadap bobot hidup, bobot karkas dan potongan komersial karkas ayam broiler strain Lohman. ZOOTEC, 39(1), 134–145. https://doi.org/10.35792/zot.39.1.2019.23810

Marbun, N. G. T., Tafsin, M., & Henuk, Y. L. (2021). Efficiency utilization of protein and energy of maggot black soldier fly at different phase on chicks. IOP Conference Series: Earth and Environmental Science, 782(2), 022095. https://doi.org/10.1088/1755-1315/782/2/022095

Mariandayani, H. N., Darwati, S., Khaerunnisa, I., & Prasasty, V. D. (2023). Growth performance of Indonesian three-breed cross chicken associated with growth hormone and insulin-like growth factor 2 genes. Veterinary World, 16(12), 2471–2478. https://doi.org/10.14202/vetworld.2023.2471-2478

Maynard, L. A. (2018). Animal nutrition. New York: McGraw-Hill book company, inc. https://doi.org/10.5962/bhl.title.155283

Musigwa, S., Morgan, N., Swick, R., Cozannet, P., & Wu, S.-B. (2021). Optimisation of dietary energy utilisation for poultry – a literature review. World’s Poultry Science Journal, 77(1), 5–27. https://doi.org/10.1080/00439339.2020.1865117

Octavia, S., Junaidi, I. H., & Widodo, E. (2018). Kandungan energi metabolis semu pakan dan energi metabolis semu terkoreksi n pada gandum dengan suplementasi enzim sebagai substitusi jagung. Jurnal Ilmiah Peternakan Terpadu, 5(3), 68–71. https://doi.org/10.23960/jipt.v5i3.p68-71

Pangaribuan, M. K., Hartono, M., Fathul, F., & Santosa, P. E. (2022). Pengaruh suplementasi tepung maggot black soldier fly (BSF) terhadap total protein plasma dan glukosa darah ayam joper betina. Jurnal Riset dan Inovasi Peternakan (Journal of Research and Innovation of Animals), 6(4), 398–406. https://doi.org/10.23960/jrip.2022.6.4.398-406

Pratiwi, F. S. (2023). Populasi Ayam Buras di Indonesia Capai 314,1 Juta Ekor pada 2022. Retrieved September 29, 2024, from https://dataindonesia.id/ website: https://dataindonesia.id/agribisnis-kehutanan/detail/populasi-ayam-buras-di-indonesia-capai-3141-juta-ekor-pada-2022

Qiu, K., Chen, J., Zhang, G., Chang, W., Zheng, A., Cai, H., … Chen, Z. (2023). Effects of dietary crude protein and protease levels on performance, immunity capacity, and AA digestibility of broilers. Agriculture, 13(3), 703. https://doi.org/10.3390/agriculture13030703

Rosmalah, S., Syamsinar, S., & Sufa, B. (2023). Inovasi pakan organik pada ternak ayam kampung super. PengabdianMu: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 8(2), 255–261. https://doi.org/10.33084/pengabdianmu.v8i2.4323

Sarwar, G., Akhter, S., Khan, S. H., Anjum, M. A., & Nadeem, M. A. (2015). Effect of different dietary protein and energy levels on the growth performance, meat and body fat composition in broiler chicks. Pakistan Journal of Agricultural Sciences, 52(4), 1121–1125.

Seyedalmoosavi, M. M., Mielenz, M., Veldkamp, T., Daş, G., & Metges, C. C. (2022). Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review. Journal of Animal Science and Biotechnology, 13(1), 31. https://doi.org/10.1186/s40104-022-00682-7

Siabandi, R., Bagau, B., Imbar, M. R., & Regar, M. N. (2018). Retensi nitrogen dan energi metabolis ransum broiler yang mengandung tepung silase kulit pisang kepok (Musa paradisiaca formatypica). ZOOTEC, 38(1), 226–234. https://doi.org/10.35792/zot.38.1.2018.18943

Sibbald, I. R., & Slinger, S. J. (1963). Factors affecting the metabolizable energy content of poultry feeds. Poultry Science, 42(1), 137–140. https://doi.org/10.3382/ps.0420137

Varianti, N. I., Atmomarsono, U., & Mahfudz, L. D. (2017). Pengaruh pemberian pakan dengan sumber protein berbeda terhadap efisiensi penggunaan protein ayam lokal persilangan. Jurnal Agripet, 17(1), 53–59. https://doi.org/10.17969/agripet.v17i1.7257

Zegeye, D. M. (2020). Nutritional evaluation of insect’s pupae-larvae and its utilization in poultry compound feed. The Open Agriculture Journal, 14(1), 1–8. https://doi.org/10.2174/1874331502014010001

Downloads

Published

2024-10-30

How to Cite

Yulianti, D. L., Sjofjan, O., Firmansyah, A., Ahzami, A. ., & Aini, B. W. R. . (2024). Effect of black soldier fly larva meal on energy, protein digestibility, performance, and carcass quality in local crossbred chickens. Jurnal Ilmu Peternakan Terapan, 8(1), 46–56. https://doi.org/10.25047/jipt.v8i1.4700

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.