Pengembangan Informasi Geospasial Lahan Pangan dalam Mendukung Kemandirian Pangan Wilayah
DOI:
https://doi.org/10.25047/jii.v18i3.1242Keywords:
informasi geospasial, lahan pangan, biofisika lahan, kesesuaian lahan, pengelolaanAbstract
Salah satu kendala utama dalam meningkatkan hasil produksi pertanian adalah pengelolaan penggunaan lahan yang tidak tepat karena perbedaan karakteristik biofisik lahan di setiap wilayah. Oleh karena itu, perlu adanya tata guna lahan berbasis tata ruang yang tepat dalam penanganan lahan pertanian. Penelitian ini bertujuan untuk menyusun informasi geospasial karakteristik biofisik lahan pangan dan kesesuaian lahan pangan (potensial dan pembatas) untuk pengembangan tanaman pangan di Kabupaten Pangkep. Penelitian ini menggunakan pendekatan pengamatan multiskala yang up-to-date, sehingga kendala-kendala yang menjadi faktor penghambat produktivitas dapat segera diatasi. Metode yang digunakan terdiri dari 2 tahap, yaitu tahap 1, analisis iklim (biofisik) lahan pangan dan karakteristik lahan melalui survei lahan, analisis laboratorium, dan spasialisasi karakteristik lahan; tahap 2, analisis kesesuaian lahan pangan (potensial dan pembatas) menggunakan metode kesesuaian lahan fuzzy set/FAO, ekstraksi informasi citra satelit, ground truth, dan ground sampling. Hasil penelitian berupa informasi geospasial karakteristik biofisik lahan pangan dan kesesuaian lahan pangan (potensial dan pembatas) untuk pengembangan tanaman pangan di Kabupaten Pangkep. Dengan adanya informasi tersebut, para pengambil keputusan akan lebih mudah dan terintegrasi dalam membuat kebijakan pengelolaan tata guna lahan pangan di Kabupaten Pangkep yang pada akhirnya bertujuan untuk meningkatkan produksi pangan
Downloads
References
Albaji, M., Naseri, A.A., Papan, P., & Nasab, S.B. (2009). Qualitative evaluation of land suitability for principal crops in The West Shoush Plain, Southwest Iran. Bulgarian Journal of Agricultural Science, 15: 135-145.
Al-Mashreki, M. H., Akhir,J. B. M., Rahim, S. A., Desa, K. Md., Lihan, T., & Haider, A. R. (2011). Land suitability evaluation for sorghum crop in the Ibb Governorate, Republic of Yemen using remote sensing and GIS techniques. Australian Journal of Basic and Applied Sciences, 5: 359-368.
Baja, S. (2012). Metode Analitik Evaluasi Sumber Daya Lahan - Aplikasi GIS, Fuzzy Set, dan MCDM. Makassar: Identitas Universitas Hasanuddin.
Baja, S., D. M. Chapman, & D. Dragovich. (2002). A conceptual model for defining and assessing land management units using a fuzzy modelling approach in GIS environment. Environmental Management, 29: 647-661.
Baja, S., Chapman, D. M., & Dragovich, D. (2001b). Fuzzy modelling of environmental suitability index for rural land use systems: an assessment using a GIS. In: Proceedings of the Sixth International Conference on GeoComputation, 24-26 September 2001, Brisbane. The University of Queensland, Brisbane.
Baja, S., Nurmiaty, & Arif, S. (2014). GIS-based soil erosion modeling for assessing land suitability in the urban watershed of Tallo river, South Sulawesi, Indonesia. Modern Applied Science, 8(4), 50-56. https://doi.org/10.5539/mas.v8n4p50.
Burrough, P.A. (1989). Fuzzy mathematical methods for soil survey and land evaluation. Journal of Soil Science, 40(3): 477- 492.
Burrough, P.A., MacMillan, R. A. & Deursen, W. (1992). Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of Soil Science, 43: 193-210.
Chinene, V. R. N. (2007). Landevaluation using the FAO framework: an example from Zambia. Soil Use and Management, 8: 130-138.
Eastman, L. J. (1993). Retirement Revisied: Extending the work-life of Older Americans. Human Resource Development Quarterly, 4(4): 409-414.
Galindo, J., Urrutia, A., & Piattini, M. (2005). Fuzzy Databases: Modelling, Design, Implementation. Idea Group Publishing, London the United Kingdom and the United States of America.
Jafarzadeh, A. A., Alamdari, P., Neyshabouri, M.R., & Saedi, S. (2008). Land suitability evaluation of bilverdy research station for wheat, barley, alfalfa, maize and safflower. Soil and Water Res., 3: 581-588.
Keshavarzi, A., Sarmadian, F., Heidari, A., & Omid, M. (2010). Land suitability evaluation using fuzzy continuous classification (A case study: Ziaran Region). Modern Applied Science, 4: 72-81.
Kurtener, D., Torbert, H. A., & Krueger, E. (2008). Evaluation of agricultural land suitability: application of fuzzy indicators. In Computational Science and Its Applications–ICCSA 2008 , pp 475-490. Springer Berlin Heidelberg.
Nurmiaty & Baja, S. (2013a). Spatial Based Assessment of Land Suitability and Availability for Maize (Zea mays L.) Development in Maros Region, South Sulawesi, Indonesia. Open Journal of Soil Science, 3: 244-251.
Nurmiaty & Baja, S. (2013b). Assessing Land Use Dynamics Using GIS-Based Cellular Automata and Markov Chain. ProceedingsThe 34th Asian Conference on Remote Sensing. ISBN: 978-602-9439-33-5 October 20-24, 2013. Bali-Indonesia.
Nurmiaty & Baja, S. (2013c). Land Suitability Assessment for Maize Cultivation Using a Fuzzy Set Approach in Geographic Information System (GIS). Proceedings The 11Th International Conference The East and Southeast Asia Federation of Soil Science Societies, ISBN 978-979-19904-1-7. October 21-24, 2013. Bogor-Indonesia.
Nurmiaty, & Baja, S. (2014). Using fuzzy set approaches in a raster gis for land suitability assessment at a regional scale: case study in Maros Region, Indonesia.
Mohammadrezaei, N., Pazira, E., Sokoti, R., & Ahmadi, A. (2013). Comparing the performance of fuzzy AHP and parametric method toevaluate of land suitability of wheat production In The Southern Plain of Urmia.International Journal of Agronomy and Plant Production, 4: 3438-3443.
Moreno, J. F. S. (2007). Applicability of knowledge-based and fuzzy theory-oriented approaches to land suitability for upland rice and rubber, as compared to the farmers’ perception, a case study of Lao PDR. M.S. Thesis, Consortium partners: University of Southampton (UK), Lund University (Sweden), University of Warsaw (Poland), International Institute for Geo-Information Science and Earth Observation (ITC) (The Netherlands).
Puslittanak. (1993). Pengamatan Tanah di Lapang. Kerjasama Pusat Penelitian Tanah dan Agroklimat dengan Balai Penataran dan Latihan Pertanian, Departemen Pertanian, Jakarta.
Reshmidevi, T.V., Eldho, T.I., & Jana, R. (2009). A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agricultural Systems, 101: 101-109.
Sarmadian, F., Keshavarzy, A., Rajabpour, B., & Askari, S. (2010). Application of MCDM method in fuzzy modeling of land suitability evaluation. 19th World Congress of Soil Science, Soil Solutions for a Changing World.1 – 6 August, Brisbane, Australia.
Sediyono, E., Setiawan, A., & Kaparang, D. R. (2013). Fuzzy simple additive weighting algorithm to determine land suitability for crop in Minahasa Tenggara. International Journal of Computer Applications, 84: 26-29.
Sui, D. Z. (1992). A fuzzy GIS modeling approach for urban land evaluation. J. Computer, Environment and Urban Systems, 16: 101-115.
Zadeh, L. A. (1965). Fuzzy sets. J. Information and Control, 8: 338-353.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Nurmiaty Nurmiaty, Miss Rahma Yassin, Yunarti Yunarti, Andi Ridwan, Samsu Arif3

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).