Karakterisasi Bakteri Penghasil Eksopolisakarida Asal Rhizosfer Tanaman Kentang sebagai Promotor Pertumbuhan Tanaman

Authors

  • Mu'minah Mu'minah
  • Junyah Leli Isnaeni
  • Baso Darwisah

DOI:

https://doi.org/10.25047/jii.v19i2.1500

Keywords:

Eksopolisakarida, Promotor Pertumbuhan, IAA, Pelarut Posfat, Fiksasi Nitrogen

Abstract

Pemanfaatan Bakteri Exopolisakarida sebagai bahan perekat dan pengikat struktur tanah sehingga struktur tanah menjadi mantap. Bakteri EPS berperan dalam menstabilkan agregat tanah melalui teknik augmentasi pada rizosfer tanaman kentang. Penelitian ini bertujuan untuk mengkarakterisasi bakteri penghasil eksopolisakarida (EPS) yang diperoleh dari rizosfer tanaman kentang dataran tinggi yang difokuskan sebagai promotor pertumbuhan tanaman. Terdapat 3 lokasi pengambilan sampel yang dibedakan berdasarkan ketinggian muka air laut yaitu: 1200, 1500 dan 1800 m dpl di Malino, Sulawesi Selatan. Sampel tanah diencerkan dan dikultur pada media ATCC No. 14 dan media spesifik media Mac Concay bakteri penghasil eksopolisakarida. Setelah dilakukan pengujian terdapat 15 isolat bakteri EPS yang berpotensi menghasilkan eksopolisakarida dan semua bakteri tersebut dikelompokkan dalam bakteri gram negatif. Isolat P3T (63) menghasilkan nilai IAA ( Indole Acetic Acid) sebesar 21,14 ppm dan sebagai pelarut fosfat sebesar 20,59 ppm. Sedangkan Isolat P3T (50) memiliki kemampuan mengikat Nitrogen sebesar 1, 42 ppm, dan menghasilkan EPS sebesar 1,07 mg/mg protein dengan sumber karbon terbaik untuk memproduksi eksopolisakarida adalah Sukrosa

Downloads

Download data is not yet available.

References

Ahmad F, Ahmad I, Khan MS. 2005. Indole acetic acid production by the indigenous isolat of Azotobacter and flourescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol. 29: 29-34.

Bertin C, Yang X, Weston LA. 2003. The Role of Root Exudates and Allelochemicals in the Rhizosphere. Plant and Soil. 256: 67–83.

Bueno SM, Garcia-cruz CH. 2006. Optimization of polysaccharides production by bacteria isolated from soil. BrazilianJ. Microbiol. 37: 296-301.

Costacurta A. Vanderleyden J. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21:1-18

Duta FP, Da Costa ACA, Lopes LMDA, Barros A, Servulo EFC, de Franca FP. 2004. Effect of process parameters on production of a biopolymer by Rhizobium sp. Appl. Biochem. Biotechnol. 114 (1): 639-652.

Farzana Y, Radizah O, 2009. Influence of rhizobacterial inoculation on growth of the sweet potato cultivar. On Line Journal of Biological Science, 1 (Suppl 3): 176-179.

Khalid A, Arshad M, Zahir ZA, 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96 (Suppl 3): 473-480(8).

Leveau JHJ, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71: 2365-2371.

Mu’minah, Kesaulya. H, Baharuddin and Mustafa. M. 2014. Soil Conservation Utilization Of Organic Matterial and Plant System Of Production Potato (Solanum tuberosum L) and Land Productivity J. Scientific and Technology Research 3(3): 150-156

Mu’minah, Baharuddin, Subair. H, Fahruddin. 2015. Isolation and Screening Bacterial Exopolysaccharide (EPS) from Potato Rhizosphere in Highland and The Potential as a Producer Indole Acetic Acid (IAA). J. Procedia Food Science Elsevier ( 3 ) : 74 – 81

Patten CL. Gglick BR. 1986. Bacterial biosynthesis of indole-3acetic acid. Can. J. Microbiol. 42:207-220.

Patten CL, Glick BR. 2002. Role of Pseudomonas putida indoleacetic acid in development of the plant root system. Appl Environ Microbiol 68: 3795 – 3801.

Povolo S, Casella S. 2004. Poly-3-hydroxybutyrate has an important role for the survival of Rhizobium tropici under starvation. Annals Microbiol. 54(3): 307-316.

Remel (2005). Microbiology Products: Instructions for use of MacConkey Agar. http://www.remelinc.com. [28 Jun 2013]

Santi. L.P, Ai Dariah, dan Goenadi DH. 2008. Peningkatan kemantapan agregat tanah mineral oleh bakteri penghasil eksopolisakarida. J. Plantation Tower : 76 (2), 93 – 103

Spaepen S. Vanderleden J. Remans R. 2007. Indole-3-acetic acid in microbiol and microorganisms plant signalling. FEMS Microbilogy Reviews, 31 (Suppl4):425-448

Spaepen S. Das F, Luyten E, Michiels J, Vanderleden J. 2009. Indole-3-acetic acid regulated genes in Rhizobium etli CNPAF512. FEMS Microbiol Lett. 291:195-200

Steinmetz I, Rohde M, Brenneke B. 1995. Purification and characterization of exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. Infection Immunity. 63(10): 3959-3965.

Sunil T. Pawar, Amarsinh A. Bhosale, Trishala B. Gawade and Tejswini R. Nale. 2013. Isolation, Screening and optimalization of exopolysacharide producing bacterium from saline soil. J. Microbiology and Biotechnology Research :3 (3) : 24-31

Sutherland IW. 2001. Microbial polysaccharides from Gram negative bacteria. Int .Dairy. J. 11(9): 663–674.

Wingender J, Neu TR, Flemming HC. 1999. What are Bacterial Extracellular Polymeric Substances? In. Microbial Extracellular Polymeric Substances: characterization, structure and function. Wingender J, Neu TR, Flemming HC (Eds.). Springer-Verlag, Berlin. pp. 1-15.

Published

2019-09-09

How to Cite

Mu’minah, M., Leli Isnaeni, J., & Darwisah, B. (2019). Karakterisasi Bakteri Penghasil Eksopolisakarida Asal Rhizosfer Tanaman Kentang sebagai Promotor Pertumbuhan Tanaman. Jurnal Ilmiah Inovasi, 19(2). https://doi.org/10.25047/jii.v19i2.1500

Issue

Section

Article

Similar Articles

<< < 1 2 3 4 5 6 

You may also start an advanced similarity search for this article.