Modifikasi Pati Beras Menggunakan Teknologi Cold Plasma Dielectric Barrier Discharge (DBD)

Rice Starch Modification Using Cold Plasma Dielectric Barrier Discharge (DBD) Technology

Authors

  • Mutimatul Munawaroh Politeknik Negeri Jember
  • Riyanti Ekafitri Pusat Riset Teknologi Tepat Guna (PRTTG) – Badan Riset Inovasi Nasional
  • Titik Budiati Politeknik Negeri Jember

DOI:

https://doi.org/10.25047/jofe.v4i3.5977

Keywords:

Cold Plasma, Dielectric Barrier Discharge (DBD), Pati Beras

Abstract

Pemanfaatan pati beras native memiliki keterbatasan dalam industri pangan karena tidak stabil terhadap perubahan suhu, kondisi asam, tidak larut dan mudah mengalami retrogradasi. sehingga perlu dilakukan modifikasi untuk meningkatkan sifat fungsional pati. Salah satu metode fisik untuk memodifikasi pati adalah teknologi cold plasma yang dihasilkan oleh reactor  Dielectric Barrier Discharge (DBD). Dalam penelitian ini, modifikasi pati beras dilakukan menggunakan Dielectric Barrier Discharge (DBD) dengan tujuan untuk mengetahui pengaruh beberapa variasi tegangan (8 kV, 10 kV, 12 kV dan 14 kV) terhadap karakteristik pati beras. Berdasarkan hasil penelitian, kadar air pati beras native dan termodifikasi berkisar antara 5,93-8,18%, kadar amilosa meningkat dari 22,36% menjadi 23,95-25,70%, water absorption index meningkat dari 1,20 g/g menjadi 1,25-1,77 g/g, oil absorption index meningkat dari 3,58 g/g menjadi 3,88-4,09 g/g, solubility meningkat dari 30,192 g/g menjadi 30,708-26,683 g/g dan swelling power cenderung menurun dari 14,783 g/g menjadi 12,506-12,704 g/g. Semua nilai tersebut dihitung dalam basis kering (%b/k). Pati beras termodifikasi yang dihasilkan memiliki peak viscosity, breakdown dan final viscosity cenderung meningkat serta setback dan pasting temperature yang cenderung menurun.

References

Anugrahati, N. A., & Yudianto, C. M. (2022). Pengaruh rasio tepung Garut hasil HMT dan xanthan gum terhadap daya serap air dan cooking loss mi laksa. Agrointek : Jurnal Teknologi Industri Pertanian, 16(3), 396–402. https://doi.org/10.21107/agrointek.v16i3.13350.

AOAC. (2005). Official Methods of Analysis of Association of Official Analytical Chemists (18th ed.). AOAC International, Gaithersburg, Md.

Banura, S., Thirumdas, R., Kaur, A., Deshmukh, R. R., & Annapure, U. S. (2018). Modification of starch using low pressure radio frequency air plasma. Lwt, 89, 719–724. https://doi.org/10.1016/j.lwt.2017.11.056.

Bie, P., Pu, H., Zhang, B., Su, J., Chen, L., & Li, X. (2016). Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science and Emerging Technologies, 34, 196–204. https://doi.org/10.1016/j.ifset.2015.11.019.

Carvalho, A. P. M. G., Barros, D. R., da Silva, L. S., Sanches, E. A., Pinto, C. da C., de Souza, S. M., Clerici, M. T. P. S., Rodrigues, S., Fernandes, F. A. N., & Campelo, P. H. (2021). Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. International Journal of Biological Macromolecules, 182, 1618–1627. https://doi.org/10.1016/j.ijbiomac.2021.05.165.

Chaiwat, W., Wongsagonsup, R., Tangpanichyanon, N., Jariyaporn, T., Deeyai, P., Suphantharika, M., Fuongfuchat, A., Nisoa, M., & Dangtip, S. (2016). Argon Plasma Treatment of Tapioca Starch Using a Semi-continuous Downer Reactor. Food and Bioprocess Technology, 9(7), 1125–1134. https://doi.org/10.1007/s11947-016-1701-6.

Chen, Y., She, Y., Zhang, R., Wang, J., Zhang, X., & Gou, X. (2020). Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Science and Nutrition, 8(1), 16–22. https://doi.org/10.1002/fsn3.1303.

Diniyah, N., Subagio, A., Lutfian Sari, R. N., & Yuwana, N. (2019). Sifat Fisikokimia Dan Fungsional Pati Dari Mocaf (Modified Cassava Flour) Varietas Kaspro Dan Cimanggu. Jurnal Penelitian Pascapanen Pertanian, 15(2), 80. https://doi.org/10.21082/jpasca.v15n2.2018.80-90.

El-Sheikh, M. A., Ramadan, M. A., & El-Shafie, A. (2010). Photo-oxidation of rice starch. Part I: Using hydrogen peroxide. Carbohydrate Polymers, 80(1), 266–269. https://doi.org/10.1016/j.carbpol.2009.11.023.

Feizollahi, E., Misra, N. N., & Roopesh, M. S. (2021). Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition, 61(4), 666–689. https://doi.org/10.1080/10408398.2020.1743967.

Fitriani, S., Yusmarini, Y., Riftyan, E., Saputra, E., & Rohmah, M. C. (2023). Karakteristik dan Profil Pasta Pati Sagu Modifikasi Pragelatinisasi pada Suhu yang Berbeda. Jurnal Teknologi Hasil Pertanian, 16(2), 104. https://doi.org/10.20961/jthp.v16i2.56057.

Ge, X., Shen, H., Sun, X., Liang, W., Zhang, X., Sun, Z., Lu, Y., & Li, W. (2022). Insight into the improving effect on multi-scale structure, physicochemical and rheology properties of granular cold water soluble rice starch by dielectric barrier discharge cold plasma processing. Food Hydrocolloids, 130. https://doi.org/10.1016/j.foodhyd.2022.107732.

Goiana, M. L., & Fernandes, F. A. N. (2023). Influence of Dielectric Barrier Discharge Plasma Treatment on Corn Starch Properties. Processes, 11(7). https://doi.org/10.3390/pr11071966.

Gupta, R. K., Guha, P., & Srivastav, P. P. (2023). Effect of high voltage dielectric barrier discharge (DBD) atmospheric cold plasma treatment on physicochemical and functional properties of taro (Colocasia esculenta) starch. International Journal of Biological Macromolecules, 253(2). https://doi.org/10.1016/j.ijbiomac.2023.126772.

Kusnandar, F., Mutmainah, M., & Muhandri, T. (2021). Karakteristik Fisikokimia Pati Ubi Banggai (Dioscorea alata). AgriTECH, 41(3), 220. https://doi.org/10.22146/agritech.52535.

Lan, H., Hoover, R., Jayakody, L., Liu, Q., Donner, E., Baga, M., Asare, E. K., Hucl, P., & Chibbar, R. N. (2008). Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches. Food Chemistry, 111(3), 663–675. https://doi.org/10.1016/j.foodchem.2008.04.055.

Lee, S. J., Hong, J. Y., Lee, E. J., Chung, H. J., & Lim, S. T. (2015). Impact of single and dual modifications on physicochemical properties of japonica and indica rice starches. Carbohydrate Polymers, 122, 77–83. https://doi.org/10.1016/j.carbpol.2015.01.009.

Liang, Y., Zheng, L., Yang, Y., Zheng, X., Dao, X., Ai, B., & Zhanwu, S. (2024). Dielectric barrier discharge cold plasma modifies the multiscale structure and functional properties of banana starchle. International Journal of Biological Macromolecules, 264(1). https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.130462.

Marenco-Orozco, G. A., Rosa, M. F., & Fernandes, F. A. N. (2022). Effects of multiple-step cold plasma processing on banana (Musa sapientum) starch-based films. Packaging Technology and Science. https://doi.org/https://doi.org/10.1002/pts.2636.

Moura, H. V., Gusmão, R. P. de, Gusmão, T. A. S., Castro, D. S. de, Almeida, R. L. J., & Figueirêdo, R. M. F. de. (2020). Extraction and Characterization of Native Starch From Black and Red Rice. Journal of Agricultural Studies, 8(3), 1. https://doi.org/10.5296/jas.v8i3.16183.

Nasiru, M. M., Frimpong, E. B., Muhammad, U., Qian, J., Mustapha, A. T., Yan, W., Zhuang, H., & Zhang, J. (2021). Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2626–2659. https://doi.org/10.1111/1541-4337.12740.

Obadi, M., Qi, Y., & Xu, B. (2023). No TitleHigh-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers. https://doi.org/https:doi.org/10.1016/j.carbpol.2022.120185.

Okyere, A. Y., Rajendran, S., & Annor, G. A. (2022). Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Research in Food Science, 5, 451–463. https://doi.org/10.1016/j.crfs.2022.02.007.

Pankaj, S. K., Shi, H., & Keener, K. M. (2018). A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science and Technology, 71(November 2017), 73–83. https://doi.org/10.1016/j.tifs.2017.11.007.

Sarangapani, C., Thirumdas, R., Devi, Y., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2016). Effect of low-pressure plasma on physico-chemical and functional properties of parboiled rice flour. Lwt, 69, 482–489. https://doi.org/10.1016/j.lwt.2016.02.003.

Shen, H., Guo, Y., Zhao, J., Zhao, J., Ge, X., Zhang, Q., & Yan, W. (2021). The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. International Journal of Biological Macromolecules, 191, 821–831. https://doi.org/10.1016/j.ijbiomac.2021.09.157.

Sonkar, S., Jaddu, S., Pradhan, R. C., Dwivedi, M., Seth, D., Goksen, G., Sarangi, P. K., & Lorenzo, J. M. (2023). Effect of atmospheric cold plasma (pin type) on hydration and structure properties of kodo-millet starch. Lwt, 182(May), 114889. https://doi.org/10.1016/j.lwt.2023.114889.

Srangsomjit, Natchanon. Bovornratanaraks, Thiti., Chotineeranat, Sunee., Anuntagool, J. (n.d.). Solid-state modification of tapioca starch using atmospheric nonthermal dielectric barrier discharge argon and helium plasma..

Srangsomjit, N., Bovornratanaraks, T., Chotineeranat, S., & Anuntagool, J. (2022). Solid-state modification of tapioca starch using atmospheric nonthermal dielectric barrier discharge argon and helium plasma. Food Research International, 162. https://doi.org/https://doi.org/10.1016/j.foodres.2022.111961.

Sun, X., Saleh, A. S. M., Sun, Z., Ge, X., Shen, H., Zhang, Q., Yu, X., Yuan, L., & Li, W. (2022). Modification of multi-scale structure , physicochemical properties , and digestibility of rice starch via microwave and cold plasma treatments. LWT, 153(September 2021), 112483. https://doi.org/10.1016/j.lwt.2021.112483.

Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2017). Functional and rheological properties of cold plasma treated rice starch. In Carbohydrate Polymers (Vol. 157). Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2016.11.050.

Widyahapsari, D. A., -, H., Setyawati, S. R., Sirait, S. D., & Yuliana, E. (2021). Penurunan Kadar Total Oksalat Tepung Talas dan Tepung Belitung asal Bogor, Indonesia Menggunakan Dua Metode Perendaman. Warta Akab, 45(2), 78–83. https://doi.org/10.55075/wa.v45i2.32.

Yousf, N., Nazir, F., Salim, R., Ahsan, H., & Sirwal, A. (2017). Water solubility index and water absorption index of extruded product from rice and carrot blend. Journal of Pharmacognosy and Phytochemistry, 6(6), 2165–2168..

Zhang, B., Xiong, S., Li, X., Li, L., Xie, F., & Chen, L. (2014). Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. Food Hydrocolloids, 37, 69–76. https://doi.org/10.1016/j.foodhyd.2013.10.034.

Zhang, B., Zhang, Q., Wu, H., Su, C., Ge, X., Shen, H., Han, L., Yu, X., & Li, W. (2021). The influence of repeated versus continuous dry-heating on the performance of wheat starch with different amylose content. Lwt, 136(P2), 110380. https://doi.org/10.1016/j.lwt.2020.110380.

Downloads

Published

2025-07-21

How to Cite

Munawaroh, M., Ekafitri, R., & Budiati, T. (2025). Modifikasi Pati Beras Menggunakan Teknologi Cold Plasma Dielectric Barrier Discharge (DBD): Rice Starch Modification Using Cold Plasma Dielectric Barrier Discharge (DBD) Technology. Journal of Food Engineering, 4(3), 150–165. https://doi.org/10.25047/jofe.v4i3.5977

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>